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Abstract

Let A ∈ CN×N , b ∈ CN . We consider the problem of computing the action of a matrix func-
tion, i.e. f(A)b, by means of a randomized Krylov method. Initially, we introduce some basic
concepts needed for the derivation of the method. We then derive the so-called sFOM method,
a randomized analog of the classical FOM method for matrix functions. We also make explicit
a stopping condition for this algorithm, incorporating the most important qualities of the main
algorithm with regards to memory access. Finally, we provide a suite of numerical experiments,
validating the algorithm and implementation, and also highlighting some potential pit-falls. We
conclude by an illustrative example suggesting a possible application of the method to exponen-
tial integrators. The source code for these experiments is also made publicly available.
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1 Introduction

In the field of numerical linear algebra, randomized methods are increasingly becoming an indis-
pensable tool for performance-hungry computation. In many applications, these methods have
unlocked solutions to previously intractable problems. Familiar examples of such methods in-
clude randomized methods for matrix decomposition and low-rank approximation that have in
many instances become standard techniques during the last decade. See for instance the review
paper [5]. Such techniques utilize randomized reduction to extract the most important actions of
matrices or operators, and in this work we will consider similar ideas applied to iterative Krylov
methods. More precisely, our application of these randomization techniques will be concerned
with computing the action of a matrix function. The task of computing this action on a vector
is a basic task arising in many areas of computational science. In this work, we follow the ap-
proach suggested by Güttel and Schweitzer [4] and employ accelerated computations by means
of a randomized Krylov subspace method for the f(A)b problem.

In many applications, the matrix A is sparse and very large, for instance as in discretization-
matrices of PDEs, or Laplacians in network problems. In classical Krylov methods for the
f(A)b problem, the cost of orthogonalization can pose a significant bottleneck for computation,
especially on modern architectures where parallelization is ubiquitous. For these applications,
the communication time is often limiting to the application, and orthogonalization here imposes
a global synchronization step, making any decrease in the orthogonalization time required very
welcome. In addition, if the matrix in question is very large, frequently accessing the full Krylov
basis may be a limiting factor to the speed of the approach. In the current method, these
problems are alleviated by means of a random embedding matrix, which significantly reduces
the cost of orthogonalization as a result of the formulation of the method. Additionally, the
method requires full access to the Krylov basis only in the final iteration, and in some special
cases; never.

We will focus on developing a randomized analog of the full orthogonalization method for
matrix functions. Moreover, [4] provides additional derivations of a randomized analog of the
classical GMRES method, in the context of matrix functions. The reader is referred to this
resource for additional information on the randomized GMRES method.

The report is structured as follows. In Section 2 we present the derivation of the main algo-
rithm, along with references to additional resources and a short discussion on random matrices
for applications in Krylov methods. Section 3 presents some numerical experiments performed
with the method, and also provides additional details on the implementation. We also explicitly
implement a stopping condition suggested but not used in [4]. Finally, in Section 4 we conclude
by summarizing our results, and provide some outlook for future continuation of the current
work.
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2 Derivation of sFOM

Consider a function f : C 7→ C, and let A ∈ CN×N . Let Λ(A) denote the spectrum of A, and
suppose Γ is a Jordan curve enclosing the negated spectrum of A, −Λ(A). Finally, suppose f is
holomorphic in and on Γ. Then f permits the integral representation

f(A)b =

∫
Γ

f(t)(tI +A)−1bdµ(t) . (2.1)

This integral form is the basis of the method considered here. As in classical Krylov methods
for matrix functions, we will focus our attention on the shifted linear system arising in (2.1).
The approximation of the solution to this system will be done by means of randomized Krylov
methods, and we will focus on the full orthogonalization method, henceforth FOM, coupled with
a random sketching matrix to accelerate the computations.

2.1 Briefly on Random Matrices

A very important element in our method is a random matrix, called a sketching matrix, that
will be used to facilitate accelerated computations, at the cost of some accuracy. The sketching
matrix will be a (possibly) complex matrix S ∈ Cs×N , where importantly s ≪ N . This matrix
can be viewed as an embedding from RN to Rs [1], and we can estimate inner products on RN

by

⟨x, y⟩ ≈ ⟨Sx, Sy⟩ ,
for x, y ∈ RN . Presently, we relate some definitions concerning a certain class of subspace

embedding that will be of particular importance to us.

Definition 2.1.1. Let 0 < ε < 1. The sketching matrix S ∈ Cs×N is said to be an ε-subspace
embedding of V ⊂ RN if

⟨u,v⟩ − ε∥u∥∥v∥ ≤ ⟨Su, Sv⟩ ≤ ⟨u,v⟩+ ε∥u∥∥v∥ , (2.2)

for all u,v ∈ V .

Notice that this definition essentially establishes a class of embedding matrices with a certain
quality in the inner-product approximation mentioned above. Definition 2.1.1 will be important
later, for when we need to perform estimates on the size of the iterates in our method.

In he considered approach, a crucial observation is that the embedding matrix S can be drawn
at random. In our case however, V in Definition 2.1.1 will correspond to a Krylov basis, and we
will not have a-priori knowledge of the quality of the embedding, since we do not have access to
the full basis. Therefore, we would like to draw a random matrix that satisfies (2.2) with high
probability, say 1− δ, where δ ≪ 1.
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Definition 2.1.2. The random matrix S, taking values in Cs×N , is called a (ε, δ) oblivious
subspace embedding for any fixed subspace V ⊂ RN if it is an ε-embedding for this space with
probability at least 1− δ, for δ ∈ [0, 1].

There are a number of distributions that are known to satisfy this embedding property, among
them; Gaussians, Rademacher-distributions, and randomly sub-sampled Fourier matrices [1]. In
the numerical experiments performed in this work, S will be a randomly sub-sampled discrete
cosine transform, following its usage to good effect in [4]. See also [8]. Related embedding
matrices are reviewed in some detail in [11].

To construct our embedding matrix, we let S ∈ Cs×N be defined by

S =

√
n

s
DFE , (2.3)

with D ∈ Cs×N , F ∈ CN×N , and E ∈ CN×N . Here D is a so-called diagonal projector onto
our m-dimensional space. In our case, this matrix will be selecting s rows of the product FE at
random. Furthermore, E is a diagonal matrix with independent Rademacher distributed entries.
Finally, F is the discrete cosine transform matrix.

Now, following [8], to obtain empirical subspace embedding quality ε (in the sense of expecta-
tion), we take the embedding dimension to be s = d/ε2, where d will eventually correspond to the
dimension of our approximation space. Hence, the so-called sketching parameter, the dimension
s, will be taken to be twice the maximum number of iterations in our method, cf. Section 2.
This choice yields an empirical subspace embedding quality of 1/

√
2. For our purposes, this will

be more than sufficient, cf. Section 3.1.
It is noted in [8] that for ”worst-case problems”, a more careful choice of subspace embedding

might be necessary. However, for the analysis and experiments contained in this work, the choice
(2.3) is satisfactory. We also note that (2.3) will, for performance reasons, naturally make use of
the fast cosine transform.

2.2 The sFOM Approximant

Returning to our main goal of developing an approximation to f(A)b, we turn our attention
to the shifted linear system in (2.1), and recall the standard tool of all Krylov methods; the
Arnoldi relation. Applying m iterations of Arnoldi’s method to the pair A, b, yields the Arnoldi
factorization

AVm = VmHm + (hm+1)mvm+1e
T
m , (2.4)

where Vm = [v1, . . . ,vm] ∈ CN×m is a matrix containing an orthonormal basis for the m:th
Krylov space, Km(A, b). Here Hm is an unreduced upper Hessenberg matrix. Proceeding, we
follow the derivation in [4], and consider the classical FOM approximant, defined for a possibly
nonorthonormal Krylov basis Vm by

fm = Vmf(Hm)V †
mb , (2.5)

where (·)† denotes the Moore-Penrose inverse, and Hm = V †
mAVm. It is vital to note that Hm is

small with respect to the size of the problem, and so its evaluation under f is cheap. Continuing,
we recall the integral form (2.1), and write (2.5) as
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fm = Vm

∫
Γ

f(t)(tI +Hm)−1dµ(t)V †
mb =

∫
Γ

f(t)∥b∥Vm(tI +Hm)−1e1dµ(t)

:=

∫
Γ

f(t)x(t)dµ(t) .

(2.6)

We find that the integrand contains the approximants for the shifted linear system in (2.1):

xm(t) := ∥b∥Vm(tI +Hm)−1e1 , (2.7)

and we also write xm(t) := Vmym(t), for some ym(t).
Again, following [4], we relax the problem by imposing a weak orthogonality condition on the

residual. More precisely, the residual of the approximant is explicitly given by

rm(t) = b− (tI +A)xm(t) , (2.8)

and we classically require V H
m rm(t) = 0, recognized as a Galerkin orthogonality condition. In-

stead of imposing this condition, we instead only require that the sketched residual be orthogonal
to the sketched span of Vm, i.e. we take the following condition on the residual

(SVm)H [Sb− S(tI +A)x̂m(t)] = 0 , (2.9)

where x̂ = Vmŷ for some ŷ. Definition (2.1.1) provides some motivation for this condition.
Since sketching in a sense corresponds to approximating inner product via the embedding S, the
use of sketching can be interpreted as providing an approximate orthogonality condition on the
residual. We will prefer working with ŷm(t) for reasons that will be evident later. Hence we can
write equivalently, assuming the inverse is well-defined,

ŷm(t) =
[
(SVm)H(tSVm + SAVm)

]−1
(SVm)HSb . (2.10)

Now, comparing with (2.6), we are motivated to use (2.10) to make the following definition.

Definition 2.2.1. The sketched FOM (sFOM ) approximant is given by

f̂m :=

∫
Γ

f(t)x̂dµ(t) = Vm

∫
Γ

f(t)
[
(SVm)H(tSVm + SAVm)

]−1
dµ(t)(SVm)HSb . (2.11)

We note that the approximant (2.11) is equivalent to the regular FOM approximant if S = I.
We stress that the derivation of (2.11) assumed no orthogonality of the Krylov basis, and

can therefore be constructed using a truncated Arnoldi iteration, significantly reducing the time
that needs to be spent in orthogonalization, as compared to the generation of an orthonormal
Krylov basis. Instead, the orthogonality of the sketched residual with respect to the sketched
span of the Krylov basis is imposed explicitly in (2.9).

2.3 A Closed Form Representation

In its current form, (2.11) is defined through a complex path integral, and so would require

quadrature for its evaluation. However, it is possible to derive a closed form expression for f̂m

using only basic manipulation of the integrand. Notice that so long as (2.11) is well defined, with
respect to the inverse, we must have that (SVm) is non-singular, and hence (SVm)H(SVm) must
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also be non-singular. We can then rewrite the expression in square brackets in the integrand of
(2.11) as

[
(SVm)H(tSVm + SAVm)

]−1
=

[
t(SVm)HSVm + (SVm)HSAVm

]−1

=
[
tV H

m SHSVm + V H
m SHSAVm

]−1

=
[
V H
m SHSVm

]−1 [
tI + V H

m SHSAVm(V H
m SHSVm)−1

]−1
.

(2.12)

Inserting this into the definition of sFOM, we get

f̂m = Vm

∫
Γ

f(t)
[
(SVm)H(tSVm + SAVm)

]−1
dµ(t)(SVm)HSb

= Vm

[
V H
m SHSVm

]−1
∫
Γ

f(t)
[
tI + V H

m SHSAVm(V H
m SHSVm)−1

]−1
dµ(t)(SVm)HSb

= Vm

[
V H
m SHSVm

]−1
f
(
V H
m SHSAVm(V H

m SHSVm)−1
)
(SVm)HSb ,

(2.13)

and we arrive at a closed form expression for the sFOM approximant. However, we can further
simplify this expression under some additional assumption on the structure of the sketched Krylov
basis. In particular, the approximant is, like mentioned previously, completely independent of
the choice of basis, as long as it satisfies span{Vm} = Km(A, b). Following the particular choice
of SVm suggested in [1][4][11], we require that our sketched basis be orthonormal, i.e.

(SVm)H(SVm) = I , (2.14)

and applying this condition to (2.13) yields the much simplified form

f̂m = Vmf(V H
m SHSAVm)V H

m SHSb . (2.15)

We need however still find a way to impose the condition (2.14). In [1] this is done during the
orthogonalization process of Arnoldi’s iteration, but instead we will proceed by way of [4], where
this condition is imposed at a lower cost. The idea is to satisfy this condition retrospectively,
by letting SVm = QmRm be a thin QR-decomposition of the m:th sketched Krylov basis SVm.
Then, the following substitutions will ensure the orthonormality of the sketched basis:

SVm ← Qm, SAVm ← (SAVm)R−1
m , Vm ← VmR−1

m . (2.16)

It is stressed that these substitutions should be done only implicitly where possible. These
substitutions ensure our sketched basis satisfies (2.14), and so completes our derivation of the
sFOM method. The full algorithm can be found in Algorithm 1. In this work, we do not make
explicit any error- or convergence analysis, and instead the reader is referred to the main reference
[4].

The framework presented in this derivation is rather general, and similar approaches can be
taken to derive randomized versions of other Krylov methods. For instance, in [4], a derivation
similar to the one presented above yields a randomized version of GMRES, although no closed
form is obtained. Another similar approach to Krylov subspace methods for matrix functions
has recently been suggested in [3]. Yet another, specialized, approach can also be found in [10].
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Algorithm 1 sFOM for f(A)b

Input: A ∈ CN×N , b ∈ CN , f : CN×N 7→ CN×N , N ≫ s ∈ Z+, tol, max iter

Output: f̂ ≈ f(A)b
for m = 1 to max iter do

Draw sketching matrix S ∈ Cs×N

Generate non-orthogonal Krylov basis Vm, and SVm, SAVm

Compute thin QR-decomposition of SVm

Compute q̂m = R−1
m f(QH

mSAVmR−1)QH
mSb

Use q̂m to evaluate stop crit

if stop crit < tol then

Compute f̂m = Vmq̂m

Return f̂m

end if
end for

Notice that (1) only requires the evaluation of the full approximant when the method has
converged, and so we need full access to the Krylov basis only at the final iteration. This is one
of the main benefits of the method with respect to the memory requirements of the compute.
Furthermore, for some applications, it is reasonable to assume that only some components of the
resulting vector need to be accessed. In this case, we do not even need access to the full Krylov
basis, but only parts of it. This case would of course lower the memory requirements even more.

2.4 Stopping Criterion

At the moment, we have no way of knowing if our method has converged our not. As with
all iterative methods, we need a stopping criterion to be able to judge when to stop iterating
the method. For the current method, this is particularly important, since it appears it displays
somewhat irregular convergence. This is especially pronounced if the method is further iterated
after convergence, where it has a tendency to inflate errors induced by rounding. In some cases,
this leads to completely erroneous approximations (see Section 3.1).

To develop a robust stopping criterion, we will use an approach that is very common for
iterative methods. This particular method is due to the main reference [4], where it was suggested,
but never implemented in their tests. As an indicator of convergence, we usually study the
difference between iterates, ∥f̂m+d − f̂m∥, for some small integer d. If this difference at any
point is found to be smaller than some tolerance, tol, the method is deemed to have converged,
and we stop iterating. Keeping in mind that one of the main aims of the current method is to
alleviate the excessive memory access associated with classical Krylov methods, especially for
very large problems, we would like to not explicitly access f̂m, since this requires full access to
Km(A, b).

Following [4], we use the fact that f̂m, f̂m+d ∈ Km+d(A, b), together with the fact that our
sketching matrix S is an ε-embedding of this space (cf. Definition 2.1.1). Then we can write∥∥∥f̂m+d − f̂m

∥∥∥ ≤ 1√
1− ε

∥∥∥S (
f̂m+d − f̂m

)∥∥∥ . (2.17)

Now, writing f̂m = Vmq̂m (cf. Algorithm 1), and substituting this above, yields
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∥∥∥f̂m+d − f̂m

∥∥∥ ≤ 1√
1− ε

∥∥∥∥SVm+d

(
q̂m+d −

[
q̂m

0d

])∥∥∥∥ . (2.18)

Since SVm is significantly smaller, in the sense of the dimension of the columns, than the full
basis Vm, this expression can be evaluated cheaply, operating only on small matrices and vectors.
However, since the subspace embedding-quality, ε, is unknown, we need to estimate it. A simple
estimate of this parameter can be obtained by noticing that (2.2) implies that

(1− ε) ≤ ∥Svm+d∥2

∥vm+d∥2
≤ (1 + ε) . (2.19)

Using ∥vm+d∥ = 1, we have

1√
1 + ε

≤ 1

∥Svm+d∥
≤ 1√

1− ε
, (2.20)

and we can use the quantity 1/∥Svm+d∥ as an estimate on the unknown quantity 1/
√
1− ε.

For reasonable embedding qualities ε, this interval is relatively tight, yielding a good estimate.
However, it deteriorates for embeddings of lesser quality. To see this, notice that for an embed-
ding quality approaching ε = 1, i.e. a very low quality embedding, the interval containing the
approximating quantity becomes unbounded. We then no longer have any guarantee that our
approximation is reasonably close to the quantity we are trying to estimate, and so the strategy
presented here has the potential to fail.

Then, we will use the following estimate for the difference between iterates:∥∥∥f̂m+d − f̂m

∥∥∥ ≈ 1

∥Svm+d∥

∥∥∥∥SVm+d

(
q̂m+d −

[
q̂m

0d

])∥∥∥∥ . (2.21)

This estimate is evaluated at every iteration, and if we find it to be smaller than some user
specified tolerance tol, we terminate the algorithm. Numerical experiments suggest this stopping
criterion to be robust and very accurate, for the embedding strategy used in this work, as well
as in [4]. See Section 3.1.
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3 Numerical Experiments

This section provides some numerical experiments on the sFOM method. The sFOM algorithm
is implemented in the Julia programming language [2]. We provide a basic implementation of the
main algorithm that can be of general use, as well as some examples where sFOM is employed
in the context of simple exponential integrators. Unless explicitly stated, we use a truncated
Arnoldi iteration with truncation length 4, and subspace embedding dimension s = 2 ·max iter.
The source code is freely available at https://github.com/lithell/RandomKrylovfAb.

3.1 Basic Verification

We begin with some basic verification, to ensure that the method is producing good approxi-
mations to the problem. Initially, we verify that the method is converging as expected, and we
then move on to investigating the behaviour of the stopping criterion developed in Section 2.4,
as well as the effect of varying the embedding quality ε.

3.1.1 Convergence

Wathen Matrix

For our first convergence-verification, we will consider the problem of approximating exp(−A)b,
where A is the ”Wathen”-matrix available through the Julia package MatrixDepot.jl [13].
To use this matrix, simply call A = matrixdepot("wathen", nn, nn). A is then a sparse,
symmetric and positive definite matrix, arising as the consistent mass matrix in the finite element
method [12]. Here, nn is the grid size in this method. We take nn = 25, yielding a 1976× 1976
matrix. We run sFOM ten times on this problem, recording the error decay. Each time we run
the algorithm with a random b, scaled to be on the same order as the elements in A. The results
of can be seen in Figure 3.1, where we also show the sparsity structure of A.

For this problem, sFOM converges as expected, and the error bottoms out in around 100
iterations, much less than the size of the problem. We also note that depending on b, the
error stagnates at different levels. The final error obtained can differ by as much as an order of
magnitude for this problem. Noting the error curves in Figure 3.1, we also see that the method
exhibits somewhat sporadic convergence, consistent with the findings in [4]. However, for this
problem the convergence is robust as a whole, and the method yields good approximations.
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Figure 3.1: Convergence of sFOM for the Wathen-matrix. We approximate exp(−A)b. The
left figure shows the errors decaying for 10 runs of sFOM on the Wathen matrix, with random
choices of b. Here we use a fixed number of iterations, m = 120. The right figure shows the
sparsity structure of the matrix.

Discrete Diffusion Operator

Figure 3.2: Convergence of sFOM on the 2D discrete diffusion operator. We approximate
exp(A)b. The figure shows the relative error decaying as a function of iteration, for 10 runs of
the method. We use a fixed number of iterations, m = 200.

The 2D discrete diffusion operator, arising in finite difference methods, is defined as

A = T ⊗ I + I ⊗ T ,

where T = 1
h2 tridiag(1,−2, 1) is the N × N standard discrete 1D Laplacian. Here h is the

discretization size over the unit square, assuming a uniform discretization in x and y. We denote
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by ⊗ the Kronecker product of two matrices. Then T is N2 ×N2 symmetric. We consider the
problem of approximating exp(A)b, with a random b scaled to have norm on the same order as the
elements in A. We take N = 35, yielding A ∈ R1225×1225. The results can be seen in Figure 3.2.
We see that the method has a much more sporadic convergence for this problem compared with
the Wathen-matrix. This convergence pattern is also representative of the general convergence
characteristic of the method. However, as a whole, the method still converges consistently.

To conclude this section, our experiments seem to indicate that the method converges con-
sistently, and generates good approximations. However, when it has converged we see that the
behaviour of the error can be troublesome. Note for instance that the general trend in Figure 3.1,
and Figure 3.2 seem to be that the error increases after the method has converged. We have
also found that for certain problems this increase can quickly get out of hand, and generate com-
pletely erroneous approximations if the results are trusted blindly. This is of course assuming
that we do not have knowledge of the behaviour of the error, as might be the case in practical
applications. It is therefore imperative to employ the stopping criterion developed in Section 2.4
if we ever hope to use the method effectively in application.

3.1.2 Stopping Criterion

Figure 3.3: True and approximate difference between iterates.

In this section we verify that the stopping criterion developed in 2.4 is satisfactory for our ap-
plication. We compare the iteration difference as predicted by (2.21) with the actual difference
between iterates. For this verification we will reuse the problem with the Wathen-matrix pre-
sented above. The results can be seen in Figure 3.3.

We see that the estimate (2.21) follows the true difference between iterates very closely. For
our formulation of the method, this estimate is good enough to reliably use it as a stopping
criterion. However, it is possible that it would becomes less reliable for embedding matrices of
lesser quality.

It is also noteworthy that the iteration difference is very small for small values of m. This
”startup” period can be rather long for larger problems, cf. [4], and it might be advised to
use some additional condition on the number of iterations performed, before we actually start
comparing our estimate to some tolerance. For instance, in this problem the iteration difference
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becomes as small as 10−7, and for generous tolerances, a naive approach may terminate the
iterations prematurely. It is not unreasonable to assume that some problems will produce a very
long startup periods, and it is probably wise to use such a condition on the iteration number if
this method is to be deployed in practice. However, for the problems considered in this work,
we have not found it necessary to employ such a strategy. Choosing an appropriate value of
this iteration threshold might be hard for some problems. Numerical experiments suggest that
sFOM can converge very quickly for small to medium scale problems, and choosing a threshold
that significantly over-estimates the startup period will be crippling in terms of performance. It
would therefore be nice to develop a strategy for estimating this startup period, see Section 4.

3.1.3 Effect of Sketching Parameter

Figure 3.4: Effect of sketching parameter on the convergence of sFOM on the discrete diffusion
operator. The problem size is N = 1225, and we run the method three times respectively for
sketching parameters s = 200, 400, 800. Numerical instabilities can clearly be seen in the conver-
gence of sFOM for s = 200.

Continuing, we investigate experimentally the effect of the sketching parameter s. That is, we
vary the subspace embedding dimension. Intuitively, a very small subspace embedding dimension
yields a faster computation, with the trade-off being slower convergence per iteration (if the
method converges at all). Conversely, if s is taken to be closer to the dimension of the full
problem, N , the computations would be more expensive, but yield more accurate results. Of
course, in the extreme case, s = N , there is no dimensional reduction at all, and we might as
well compute the full FOM approximation. We reuse the discrete diffusion operator problem,
with the same dimensions, i.e. N = 1225. We run the method ten times, for s = 200, 400, 800
respectively. The maximum Krylov dimension we encounter is still taken to be 200. The choices
s = 200, 400, 800 then correspond to one, two and four times the maximum iteration. The results
from these tests are related in Figure 3.4. Again, the sporadic convergence of sFOM is evident
from these figures. The effect is especially pronounced for s = 200, and for sketching parameters
significantly smaller than this do not generate usable approximations. For these very small
sketching parameters, the method does not seem to converge at all, and numerical instabilities
becomes completely dominant in the compute. This also highlight the importance of an adaptive
stopping condition.

That said, when the method does converge, the speed of convergence with respect to the
number of iterations do not seem to be significantly affected by the sketching parameter. The
convergence behaviour is almost identical for all three choices of sketching parameter. Hence,
there exists no incentive to take the sketching dimension to be excessively large. However, since

11



the method exhibits strong indications of numerical instabilities, it would not be wise to take s
to be too small either. There is a need to balance the expense of computation with potential
instabilities of the compute. To do this effectively, there is a need for a better understanding of
convergence properties of the method, cf. Section 4.

3.2 Example Application

3.2.1 Exponential Integrators

Consider the ordinary differential equation

∂

∂t
u(t) = g(y(t)), y(t0) = y0 , (3.1)

where g : CN 7→ CN is some general nonlinear function, and y(t) : R 7→ CN . In the special
case where g is given by g(y(t)) = Ay(t) + b, (3.1) can be solved exactly by means of a so-called
φ-function. We provide the following definition.

Definition 3.2.1. The φ-functions are defined recursively via the relation

φ0(z) = exp(z), φℓ(z) =
1

(ℓ− 1)!

∫ 1

0

exp((1− s)z)sℓ−1ds, ℓ ≥ 1 . (3.2)

For our purposes it will be sufficient to consider φ1(z), given explicitly as

φ(z) := φ1(z) =
exp(z)− 1

z
. (3.3)

Returning to our linear ODE, the solution of (3.1) with right hand side Ay(t) + b is given
explicitly by y(t) = y0 + tφ(tA)(Ay0 + b). Here we implicitly assume some extension of φ to
matrices. This can be achieved through a number of standard definitions of matrix functions,
such as the Cauchy integral form. This simple form of the solution of (3.1), while convenient,
does not hold for a general non-linear g. However, it will serve as the basis for our simple explicit
Euler exponential integrator.

Exponential integrators have proved to be highly effective for certain classes of ODEs. For a
thorough review of exponential integrators, and φ-functions, the reader is referred to the review
paper by Hochbruck and Ostermann [6].

We proceed with the definition of our exponential integrator.

Definition 3.2.2. Let 0 = t0 < t1 < · · · < tN . The explicit Euler exponential integrator for
(3.1) generates the approximations yk ≈ y(tk), defined as

yk+1 = yk + hkφ(hkJk)g(yk) (3.4)

where hk = tk+1 − tk, and Jk := g′(yk) is the Jacobian of g.

This is the approximation scheme we will use as the basis for our test-case. Notice that
(3.4) necessitates evaluation of φ(hkJk). For moderate to large Jk, this evaluation will be the
computationally dominant part of the iteration, and hence any improvement in the speed of this
compute is very welcome. It is for this purpose we will use sFOM.

In our test-cases, the ODE (3.1) will correspond to a semi-discretization of a parabolic PDE.
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3.2.2 A Quasi-Linear One-Dimensional Parabolic PDE

As an indication of possible applications of the sFOM algorithm, we use the exponential integrator
from above on a simple one-dimensional problem. This application is meant to be indicative of
how sFOM could be used in practice, and we do not aim to get highly accurate results, which
is why we employ our simple explicit Euler scheme, and not some more intricate scheme. We
will study a problem suggested by Ostermann and Hochbruck in [7]. Consider the quasi-linear
parabolic problem

∂U(x, t)

∂t
=

∂2U(x, t)

∂x2
+

1

1 + U(x, t)2
(3.5)

with x ∈ [0, 1], t ∈ [0, 0.02]. We also impose homogeneous Dirichlet boundary conditions.
We discretize this problem by the standard method of lines process, yielding the semi-discrete
problem

∂W (t)

∂t
= TW (t) + F (W (t)) , with F (W (t)) =


1

1+W1(t)2

...
1

1+WN−1(t)2

 . (3.6)

Here, T is the standard finite difference Laplacian. Then, comparing with our method (3.4), we
also write the Jacobian as:

J(W (t)) = T − 2W (t)F (W (t))2 . (3.7)

Figure 3.5: sFOM on a quasi-linear parabolic problem with homogeneous Dirichlet boundary
conditions. We use a spatial discretization N = 100, and a temporal discretization M = 350.
We approximate the solution using the explicit Euler exponential integrator, where sFOM is used
for the evaluation of the matrix function φ. We also impose a sinusoidal initial condition.

We approximate the solution to this semi-discrete problem by our exponential integrator,
where sFOM is employed for the computation of the φ-function. We compute the solution with
a spatial discretization N = 100, and a temporal discretization M = 350, with a sinusoidal initial
condition. The results can be seen in Figure 3.5.

13



Problems such as this one are a promising area of applications for methods similar to sFOM.
In this particular case, the problem is not huge, and so the exponential integrator approach
might not be as competitive as other classes of methods. However, if a very fine discretization
is required, the system matrix rapidly becomes very large. In this case, approaches making use
of exponential-integrator-type schemes become much more viable. In particular, these cases are
an ideal situation for the developing randomized methods in NLA.
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4 Conclusion and Outlook

The results from Section 3 seem to indicate that sFOM is both robust and highly effective,
especially in combination with the stopping criterion developed in Section 2.4. Furthermore, the
results from the example with the exponential integrator indicate that this is a class of problems
that could benefit greatly use of randomized techniques, especially for large, sparse, and nonlinear
problems, where computing the action of matrix functions are dominating in terms of computing
power.

There do however remain some questions concerning the convergence of sFOM. First, and
foremost, it is essential to be able to quantitatively characterize the, at times, very sporadic
convergence of sFOM. Recently, Palitta, Schweitzer, and Simoncini [9] have developed new tools
to analyze sketched Krylov methods, via a generalization of the Arnoldi relation (2.4), so-called
Arnoldi-like decompositions. Perhaps with these tools, the theoretical results from [9] could be
translated into practical tools for managing the convergence properties of implementations of
randomized Krylov methods.

Additionally, it would be beneficial to develop a more generally robust estimation of the
embedding quality, for use in the stopping criterion. As mentioned previously, (2.20) is sufficiently
accurate for high-quality embeddings, say ε < 1/2. After this point, the estimate may start to
become unreliable, and for very low-quality embeddings, it becomes practically useless. Perhaps
with some more insight into the properties of oblivious subspace embeddings, a more quantifiable
estimate could be developed. Of course, a lower embedding dimension would allow for even faster
computation, and so there is legitimate interest in developing methods for dealing with these
cases.

Finally, since the method of this work is rather general, with the pivotal step being the
sketching of the orthogonality condition in the FOMmethod, it would be interesting to investigate
whether a unified framework for randomization of classical Krylov methods could be developed.

In conclusion, the randomization of Krylov methods is a highly active research area with
much potential, where it is essential to advance the theory and methods. Methods in this class
are very promising experimentally, and with the emerging theory for these methods, the class of
randomized Krylov solvers promise to become a powerful feature in the toolkit of any researcher
in numerical linear algebra.

15



References

[1] Oleg Balabanov and Laura Grigori. ”Randomized Gram–Schmidt Process with Application
to GMRES”. SIAM Journal on Scientific Computing 44.3 (June 2022), A1450–A1474. issn:
1064-8275, 1095-7197. doi: 10.1137/20M138870X.

[2] Jeff Bezanson et al. ”Julia: A Fresh Approach to Numerical Computing”. SIAM Review
59.1 (Jan. 2017), pp. 65–98. issn: 0036-1445, 1095-7200. doi: 10.1137/141000671.

[3] Alice Cortinovis, Daniel Kressner, and Yuji Nakatsukasa. Speeding up Krylov subspace
methods for computing f(A)b via randomization. June 5, 2023. arXiv: 2212.12758[cs,
math].
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