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Abstract

We present a novel application of randomized sketching to the important area of nonlinear eigen-
problems. Our construction is motivated by the recent increase of interest in randomized methods
within the numerical linear algebra community, and their effectiveness in accelerating computa-
tions, among other advantages over classical solvers. Initially, we provide some background on
nonlinear eigenproblems and randomized sketching, with numerous references to literature for
additional material. We present the construction of our main contribution, namely the sketched
nonlinear Arnoldi (sNLAR) algorithm, a randomized analog of the successful nonlinear Arnoldi
solver due to Voss, and we find support for our approach in the empirical success of recently
proposed randomized methods for linear eigenvalue problems, among other applications. A num-
ber of numerical experiments also serve to justify the competetiveness of our proposed solver,
with standard benchmarks, as well as a problem taylored specifically to our needs. We also
mention some implementation details, providing the reader with the necessary material to recre-
ate our experiments. Finally we discuss some issues that arise from our approach, and how to
remedy them, in addition to an outlook on potential use cases and a strengthened theoretical
understanding of our approach, and randomized solvers in general.



Sammanfattning

Vi presenterar en ny tillämpning av randomiserade metoder inom det viktiga omr̊adet av ic-
kelinjära egenvärdesproblem. V̊ar konstruktion motiveras av den aktuella ökningen av intres-
set för randomiserade metoder inom numerisk linjär algebra, och deras förm̊aga att accelerera
beräkningar avsevärt, bland andra fördelar över klassiska lösare. Inledningsvis ges bakgrunds-
material över ickelinjära egenvärdesproblem s̊aväl som randomiserade metoder, med flertalet
referenser till relevant literatur. Vi presenterar v̊art huvudsakliga bidrag, sNLAR, en rando-
miserad version av den framg̊angsrika ickelinjära Arnoldi-algoritmen härledd av Voss, och vi
motiverar v̊ar konstruktion med de randomiserade metoder för linjära egenvärdesproblem, bland
andra tillämpningar, som nyligen visat sig vara mycket effektiva. Flertalet numeriska experiment
används som stöd för att v̊ar metod är ett bra val bland alternativa metoder, där vi redogör för
ett standardiserat problem med stort inflytande i omr̊adet, samt ett problem som konstruerats
specifikt för detta arbete. Vi redogör även för ett antal aspekter av implementeringen utav v̊ar
metod, med detaljer som till̊ater läsaren att själv återskapa v̊ara experiment. Slutligen disku-
teras ett antal utmaningar med v̊ar metod som m̊aste hanteras, samt en överblick över möjliga
tillämpningsomr̊aden och framtida teoretiskt arbete, b̊ade med avseende p̊a v̊ar metod, men även
med avseende p̊a utmaningar med randomiserade metoder i allmänhet.
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1 Introduction

Arguably one of the most exciting recent developments in numerical linear algebra is the use
of randomized methods. Randomized methods have been developed for a suite of different
applications such as least squares problems [31], linear systems [34], linear eigenvalue problems
[25], matrix functions [11][30], and matrix decompositions [13]. Randomized methods promise
to significantly accelerate computations, while retaining high accuracy, by means of randomized
embeddings extracting the most important characteristics of a problem.

In this work, we present an application of the techniques of randomized numerical linear alge-
bra to a standard method in solutions of nonlinear eigenproblems, namely the nonlinear Arnoldi
(NLAR) algorithm. More specifically, we use the tools of randomized orthogonal projection
methods to construct a randomized analog of the NLAR algorithm. In the literature, the type
of randomization utilized in this work is often referred to as sketching. Our techniques will use
ideas similar to previous work in the area, utilizing the so-called sketch-and-solve paradigm. This
technique has been successfully applied to a number of different problems in numerical linear
algebra. For instance, in [25] the sketch-and-solve paradigm is used to accelerate computations
in GMRES for solving linear systems of equations, and for solving linear eigenvalue problems
much faster than with standard methods. In [11] the sketch-and-solve paradigm is used in the
context of FOM for matrix functions.

However, the literature on sketching for nonlinear eigenproblems is sparse, and to the knowl-
edge of the author, this work is the first where these techniques are applied to orthogonal-
projection-type methods. However, there have been some applications of these methods to this
type of problem, for example in the context of rational approximation [10].

The NLAR algorithm was developed by Voss in [36], and has since become a standard tool
in the solution of nonlinear eigenproblems [12]. NLAR is a projection-type algorithm, where the
full problem is projected onto a subspace that is iteratively expanded during the course of the
algorithm. This makes NLAR a prime candidate for the sketch-and-solve paradigm.

The main advatage of sketching, that is typically cited in the literature, is that this ran-
domization step induces a significant reduction in dimensionality of the vectors and matrices
involved in the computations, often unlocking previously infeasible techniques. This reduction
in dimensionality, or embedding, also permits us to transfer expensive operation to lower dimes-
nional sketches of the quantities of interest, reducing the amount of work that has to be done on
potentially very large vectors and matrices.

We try to capture these advantages that have so far mostly been recorded for the linear case
of eigenproblems, by transferring these techniques to the nonlinear case. Specifically, the main
contributions of this thesis are:
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1. A novel method for the solution of large and sparse nonlinear eigenvalue problems based
on applying the sketch-and-solve paradigm to the nonlinear Arnoldi method, an approach
that can also be generalized to other popular projection-type methods.

2. Application of various techniques from within randomized numerical linear algebra to pro-
vide an implementation of a robust and competetive randomized algorithm, including val-
idating this implementation by standard benchmark problems.

The remainder of this work is organized as follows. In Section 2 we provide some background
on nonlinear eigenproblems, establishing a number of important concepts central to the theory
of these problems. We also mention in passing some techniques for solving these problem numer-
ically, while spending a significant portion of the section investigating the main building block
of our method, namely the NLAR method. Finally, we provide the necessary background in
randomized subspace embedding for our proposed method. In Section 3, we construct the main
contribution of this work, the sketched nonlinear Arnoldi algorithm (sNLAR). In this section, we
also provide some suggestions concerning the implementation, and give various specializations
for specific problem structures. Here, we also integrate standard techniques from the literature
into our implementation. Section 4 provides a suite of numerical experiments supporting the ef-
fectiveness and competitiveness of our proposed method, where we will begin by investigating an
example that has been constructed specifically for this work, and concluding by a thourough in-
vestigation into a standard large scale benchmark problem for nonlinear eigenproblems. Finally,
Section 5 concludes the text by discussing some advatantages of our method, some shortcomings
and how to remedy them, as well as some future work, both theoretical and practical.
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2 Background

2.1 Nonlinear eigenproblems

We are concerned with the nonlinear eigenproblem (NEP). We begin by providing some back-
ground regarding NEPs. For a more thorough review of the nonlinear eigenproblem, both with
regards to theory and methods, see for instance [12][14]. For a review of background material on
matrix analysis, see [15] or [9]. We have the following fundamental definition.

Definition 2.1.1. Let M(λ) ∈ Cn×n be a matrix whose elements depend analytically on the
variable λ ∈ D ⊂ C, where D is a compact simply connected subset of C. Let x, y ∈ Cn. Then

M(λ)x = 0 , or y∗M(λ) = 0 , (2.1)

is the nonlinear eigenvalue problem. Here, λ is an eigenvalue and x and y are right- and left
eigenvectors, respectively. (·)∗ denotes the Hermitian transpose. A solution (λ, x) or (λ, y) to
this problem will be called an eigenpair of the corresponding problem.

□

Remark 2.1.1. The requirement that λ ∈ D for some compact subset D of C is assumed since
we cannot in general expect to compute all eigenvalues of a NEP. Consider for instance the scalar
NEP sin(λ)v = 0, which has infinitely many solutions not restricted to any particular domain.
Therefore we limit our attention to finding solutions lying only in some predetermined domain.

NEPs arise in a variety of applications. Common examples include time-delay systems giv-
ing rise to exponential nonlinearities, see [24], and the application of boundary conditions in
discretizations of PDEs. See [17][22] for such applications resulting in square-root nonlinearities.

The problem (2.1) is the most general definition of the NEP, in the sense that the non-
linearity is completely general with respect to the eigenvalue. There are also problems where
the non-linearity is manifested in the eigenvector, but these will not be considered here. We also
remark that this form of eigenproblem generalizes the familiar linear eigenproblem, which can be
retrieved by simply choosing M(λ) = A− λI, for some matrix A. Sometimes we will be dealing
with more specialized forms of NEPs. We state the following specialized form of a NEP, which
will be used throughout.

Definition 2.1.2. A NEP that is of the form(
ℓ∑

i=1

Aifi(λ)

)
x = 0 , (2.2)

where Ai ∈ Cn×n, fi is analytic in λ ∈ D ⊂ C, and x ∈ Cn, for i = 1, . . . , ℓ, will be referred to
as a SPMF-NEP, short for Sum-of-Products-of-Matrices-and-Functions.

□
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This form of NEP is very common in application, and will receive considerable attention in
this work. Some examples of SPMFs in application include modelling of turbulent flow, leading
to exponential nonlinearities [27], and problems in fluid-solid vibration [37].

It is not immediately clear how the multiplicity of the eigenvalues should be treated. To this
end, we introduce the following defintion, see [12] for details.

Definition 2.1.3. The algebraic multiplicity of an eigenvalue λ of (2.1) is the multiplicity of the
root of det (M(z)) evaluated at z = λ.

□

We highlight the following interesting difference from the linear eigenvalue problem, with an
example due to [12]. The algebraic multiplicity of an isolated eigenvalue of (2.1) must be finite
[12], but it need not necessarily be bounded by the problem size. This is in contrast to the linear
setting. Consider the scalar NEP, i.e. a problem size of n = 1, defined by M(λ) = λm+1,m ∈ N.
This problem has an eigenvalue λ = 0 of algebraic multiplicity m+1. The algebraic multiplicity
of an eigenvalue might not always be as easy to determine as this example seems to imply.

Continuing, as with linear problems, it is also relevant to consider the geometric multiplicity
of an eigenvalue. The relationship between the algebraic and geometric multiplicity often has im-
plications for how difficult the problem is to solve numerically, and many convergence results rely
on assuming a particular relationship between these two quantities. It should be fairly evident
that the right eigenvectors of (2.1) must be elements of the kernel of M(λ), i.e. x ∈ ker(M(λ)).
Then, the geometric multiplicity is defined as the dimension of this space, dim(ker(M(λ))).

Definition 2.1.4. The geometric multiplicity of an eigenvalue λ of (2.1) is the dimension of the
kernel of M(λ), dim(ker(M(λ))).

□

An eigenvalue will be called semi-simple if the geometric multiplicty equals the algebraic
multiplicity, and simple if its algebraic multiplicity is unity.

Next we relate some perturbation results that will also be of interest in our numerical exper-
iments. We will begin by considering the sensitivity of an eigenvalue. Our focus will be centered
on establishing the so-called eigenvalue condition number, and we will use this tool to assess the
performance of our methods in our numerical experiments. It should also be noted that while
we will not consider pseudospectral stability-analysis, this is another standard and very powerful
tool for gaining insight into the stability characteristics of a problem. For more information on
this type of analysis, the reader is referred to the book by Threfethen, Lloyd, and Embree [35].

Notice that the form of NEP in Definition 2.1.2 is actually more general than presented there,
in the sense that every NEP can be considered in a split form, and thus assume the form of a
SPMF. More precisely, every NEP can be expressed as a SPMF with at most n2 terms, if n is
assumed to be the problem size. The function defining the NEP then takes the explicit form

M(λ) = f1(λ)C1 + · · ·+ fℓ(λ)Cℓ , (2.3)

where we may have one function corresponding to every entry in the matrix. Here, Ci for
i = 1, . . . , ℓ are coefficient matrices of the same size as the original problem, i.e. Ci ∈ Cn×n for
i = 1, . . . , ℓ, and ℓ is at most n2.

As a simple example, consider the problem defined by

M(λ) =

(
a(λ) b(λ)
c(λ) d(λ)

)
, (2.4)

and notice that this problem can also be written as the SPMF-NEP
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M(λ) =

(
1 0
0 0

)
a(λ) +

(
0 1
0 0

)
b(λ) +

(
0 0
1 0

)
c(λ) +

(
0 0
0 1

)
d(λ) , (2.5)

thus assuming the desired form, and consisting of n2 terms.
Following [12], we will consider a perturbation of the problem (2.1), expressed on the form

(2.3), that is determined by

∆M(λ) = f1(λ)∆C1 + · · ·+ fℓ(λ)∆Cℓ . (2.6)

Assuming that λ is an eigenvalue of the problem, and x, y are its right and left eigenvectors,
respectively, we are interested in the sensitivity of λ. More precisely, we want to know how
much the eigenvalue changes, expressed in the quantity ∆λ, when the problem is perturbed by
(2.6). To quantify this sensitivty, we introduce the eigenvalue condition number, also called the
normwise condition number.

Definition 2.1.5. The normwise condition number of an eigenvalue λ of (2.1) is defined by

κ (λ,M) = lim sup
ε→0

(
|∆λ|
ε|λ|

: (M(λ+∆λ) + ∆M(λ+∆λ)) (v +∆v) = 0 ,

∥∆Cj∥2 ≤ εαj , j = 1, . . . , ℓ

)
,

(2.7)

where αj ∈ R are scalars.
□

Notice that this definition contains some parameters that we are free to choose. Specifically,
the parameters αj , j = 1, . . . , ℓ, allow us to choose how we measure the perturbation. For
instance, we could take αj = 1 for every j, which would mean we are measuring the perturbation
in an absolute sense. Other choices result in different ways of controlling the perturbation, see
[12].

While the above form is a satisfactory definition of the normwise condition number, it is not
very pleasant to work with in practice. Instead, [12] suggests a different but equivalent form.

Theorem 2.1.1. Let the normwise condition number κ (λ,M) be defined by (2.7). Then the
normwise condition number permits the alternate form

κ (λ,M) =

(∑ℓ
j=1 αj |fj(λ)|

)
∥x∥2 ∥y∥2

|λ|y∗M ′(λ)x
, (2.8)

where x, y are right and left eigenvectors respectively, corresponding to the eigenvalue λ. αj ∈ R
are scalars.

□

For a proof of Theorem 2.1.1, the reader is referred to [12]. The eigenvalue condition number
multiplied by the machine precision is in practice for many methods a lower bound on the
smallest attainable error in the eigenvalue in question. Hence, this expression if often of practical
importance to us, and can sometimes explain seemingly stagnated convergence. We will make
use of this condition number later, when presenting some numerical experiments on our method.
We will finally remark that for many problems, the dominating part of the expression (2.8) is
not the function evaluation, nor the various eigenvalue quantities involved in this expression, but
rather, the expression
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κ(λ,M) ≈ 1

y∗M ′(λ)x
(2.9)

is often a satisfactory estimate on the condition number, and unless explicitly mentioned, this is
the expression we will use henceforth. This includes our numerical experiments.

2.2 Nonlinear projection methods

One class of methods for solving NEPs that will be of particular interest to us are the nonlinear
projection methods. This class of methods include several classic methods for the solution of
NEPs, and have found wide applicability and success in practice. In this section we will provide
a review of a general framework for these methods, setting the stage for the forthcoming section
in which we will provide a special case that will form the foundation for the proposed method.

This section will however not give a comprehensive review of methods for NEPs, as the
literature on the subject is vast, and a full summary of these methods is beyond the scope of
this text. For a more encompassing picture of the current state of this research area, the reader
is referred to, for instance, the review paper [12], or [14].

When we refer to projection-type methods, we intend methods that solve a series of smaller, or
projected, nonlinear eigenproblems whose solutions provide approximations to the solution of the
original, large scale, problem. It is important to remark that these methods are primarily suited
for solving large and sparse problems. Sparsity is a common characteristic of many problems
that may be of interest to us, and can often render direct methods infeasible at scale, since they
frequently do not account for this sparsity. While we will not provide a formal definition of
sparse-ness, it is often fairly easy to know when to choose a sparse solver, as opposed to a dense
solver. Many times, the choice of a sparse solver over a dense one is self-evident.

However, these types of methods do still make use of dense solvers, and they are an integral
step in iteratively producing approximations to the solution of the original NEP. The purpose
of this dense solver will be to solve the sequence of smaller problems produced in the course of
the computation, since the construction of these generally do not preserve any sparsity structure
present in the larger problem, making the use of dense solvers the better choice. To make things
explicit, the nonlinear projection methods that will be of interest to us can on a high level be
divided into the following steps.

1. Select a suitable projection subspace V ⊂ Cn.

2. Compute an approximate eigenpair (λ̂, x̂) satisfying the Galerkin condition

x̂ ∈ V and M(λ̂)x̂ ⊥ V . (2.10)

3. If the approximations are sufficently accurate, stop. Otherwise, return to the previous step
with a suitably augmented search space V.

Now, a number of questions immediately arise, but first, some comments. Initially, we should
remark for clarity that we will be searching for approximations in the space V. We will inter-
changably refer to this space as the projection space, the search space, and when it is obvious
from context, simply the subspace. Continuing, we also remark that the space V should be easy
to construct, but also have the ability to generate approximations of high quality, two goals
that are often in discord. Then, first of all, how can we select a subspace V that has sufficent
approximation power to achieve high enough accuracy in approximation? Furthermore, in what
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fashion should we augment the search space V such that it will keep generating better and better
approximations? Also, how do we formulate the conditions from step 2. in practice?

To begin the construction of our general projection method, and to begin to answer these
questions, suppose V is a matrix whose columns constitute an orthonormal basis for our search
space V. Then the so-called Ritz vector x̂ can be expressed as x̂ = V ŷ for some ŷ. With the Ritz
vector expressed on this form, and with the help of the basis matrix V , the Galerkin condition
in step 2. above can be reformulated as solving a projected problem. Specifically, the condition
is equivalent to requiring that

V ∗M(λ̂)V ŷ = 0 , (2.11)

where V ∗ denotes the Hermitian transpose of V . The reader will notice that this projected
problem is in turn a NEP, and that the size of this problem will be the same as the dimension of
the subspace V. Therefore, as long as the dimension of the search space is significantly smaller
than the problem size, generating approximations to the full problem from (2.11) will involve
solving a problem that is much smaller than the original NEP. This is the main idea behind
projection-type methods, namely to solve a series of smaller (and hopefully easier) problems
that each give us an approximation of a solution to the original problem. Of course, the quality
of these approximations will heavily depend on the specific subspace employed, and some choices
of this space might not provide approximations of usable quality what so ever. The choice of
V is the pivotal ingredient of these methods. Also, as mentioned earlier, the projected problem
will in general not conserve any structure that may have been present in the original problem.
In particular, any sparsity structure is almost always lost.

Remark 2.2.1. Notice that M(λ̂)x̂ = M(λ̂)V ŷ is the residual associated with the Ritz pair

(λ̂, x̂). The condition (2.10) requires the residual to be orthogonal to the span of the columns of
V , i.e. to the search space V. In this sense, we ensure our approximation is pseudo-optimal, given
our search space. This type of approximation strategy is very common in numerical analysis,
and forms the foundations for e.g. the finite element method. See for instance [21], for an
introduction.

Since the projected problem (2.11) is in general a dense NEP, and solving this problem can in
itself be nontrivial. For our purposes, the specific method to do this is not of great importance,
and any number of standard choices suffice for this purpose. The summary [12] provides various
alternatives.

Let us deal with the remaining questions that we indicated above. Initially, how does one
choose a suitable search space, V, and how do we alter it if our approximations are not satisfac-
tory? In practice it is unrealistic to expect our initial choice of search space to be of sufficient
quality to generate good approximations, and hence the initial subspace is of less importance
than the way in which we augment or expand it. Hence, these problems are really one and the
same, since the way in which we choose to expand V will largely determine the characteristics of
it.

This fact notwithstanding, the choice of our initial search space does in large determine the
convergence speed of our method, and this choice can be central to the success of any projection-
type method. A number of approaches have been suggested for this problem. Many of them
rely on either a priori information about the spectrum of a specific NEP we are solving, or by
obtaining approximate knowledge of it by means of, for example, a linearization. For instance,
the authors in [22] suggest a way to start the method proposed in their work, a method which we
will return to below. Essentially, the authors are solving a specific NEP related to electromagnetic
accelerator modelling, and suggest using a linearized version of this problem, using the eigenpairs
from this linear problem as a starting point. We will return to this specific NEP in Section 4.
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On a more general note, it is of course always beneficial to use any a priori information
about the distribution of eigenvalues, and any strategy that gives even approximate knowledge
of the spectrum of a problem will naturally help us immensely. In other cases however, such
approximate strategies might not be viable, for a variety of reasons, and no prior knowledge
about the characteristics of the problem can be utilized. This is not a problem that is unique to
projection methods, but to all NEP solvers, and some information about the problem at hand
will continue to be a major part in effectively solving NEPs.

Hence, we conclude that the issue of choosing a good initial approximation is highly problem
specific, and we will consider this problem secondary to the more relevant one, namely how
to augment the search space during the course of the algorithm. This question is one that
distinguishes different projection methods from one another, and a number of viable choices are
available. One specific example among many is the Jacobi-Davidson method for NEPs. See
[8] for details. Although we will not spend any time reviewing this method here, the reader
is encouraged to consult this reference with the purpose of highlighting that there is no best
choice of how to augment our search space, and many different approaches are indeed good
ones. The one, very successful, choice we will consider in this work is detailed presently, but the
reader should keep the framework of the nonlinear projection methods from earlier in mind, and
remember that the choice of search space we will work with for the remainder of this text is just
one choice among many. It is likely that the proposed method that we will consider in Section 3
would also be applicable to other projection-type methods, but this is not something we have
investigated further in this text.

2.3 The nonlinear Arnoldi method

We will now proceed with the nonlinear Arnoldi algorithm, henceforth NLAR, developed by Voss
in [36]. See also [22] for a generalization that avoids complex arithmetic.

The method falls in the category of projection methods, discussed in the previous section.
Importantly, the three main steps of orthogonal projection methods presented in this previous
section are also present in NLAR. In particular, NLAR also features the central step of a
projection onto our search space. As shown in the previous section, this projection manifests
itself in solving the so-called projected problem (2.11). In the preceeding section we remarked
that the main way in which we distinguish between different projection-type methods is the way
in which we expand our search space, and this is of course also true for NLAR. The reader
will recall from the discussion in the previous section that this step is also the main feature
determining the characteristics of the search space, denoted V.

As established, the computation proceeds iteratively, expanding the search space during the
course of the algorithm. We recall that we are trying to solve a NEP, i.e. we want to find an
eigenpair (λ, x) that solves the problem M(λ)x = 0. NLAR will focus on one eigenvalue at a
time, and in every iteration expand the search space in a direction that is believed to have a high
approximation potential for the eigenpair that is its current focus.

We begin by considering this central issue of how to determine a new search direction. Follow-
ing [36], we will consider two different approaches to this problem. Both of these approaches will
build upon previously well established methods for solving NEPs, but will of course be modified
to suit our purposes. As we will see, some choices of subspace expansion are more suitable than
others.

Initially, we consider one variant of inverse iteration. Several types of inverse iteration provide
effective methods for the NEP, see for instance [32]. Suppose for the moment that we have an

approximate eigenpair (λ̂, x̂), to the wanted eigenpair (λ, x). Then, the form of inverse iteration
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we will be considering suggests that we choose a new search direction according to

v = M(λ̂)−1M ′(λ̂)x̂ . (2.12)

Now, inverse iteration is known to converge exceedingly quickly. For instance, it converges cubi-
cally for Hermitian problems [36]. However, it suffers from having to solve a potentially very large
linear system every iteration. In addition, the matrices in this system are not constant through-
out the course of the algorithm, but change as the approximations of the eigenpair are updated.
We could instead solve the system with a fixed shift σ, i.e. compute M(σ)−1M ′(λ̂)x̂, where the
shift could be changed during the computations, but this will lead to incorrect convergence [36].

Algorithm 1 The nonlinear Arnoldi method for M(λ)x = 0

1: input: pole σ, initial basis vector v, ∥v∥ = 1
2: output: eigenpair approximations
3: k = 1, m = 0, V = v
4: while m < number of wanted eigenvalues and k < max iterations do
5: solve projected problem V ∗M(µ)V y = 0
6: compute Ritz vector u = V y and residual rk = M(µ)u
7: if rk < tol then
8: save eigenpair (µ, u)
9: m = m+ 1

10: choose approximations µ and u to next eigenpair
11: compute residual r = M(µ)u
12: end if
13: v = M(σ)−1M(µ)u
14: orthogonalize v against span{V }
15: v = v/ ∥v∥
16: expand basis V = [V, v]
17: k = k + 1
18: end while
19: return computed eigenpairs

To remedy the shortcomings of inverse iteration, we shift our attention to the so-called residual
inverse iteration of Neumaier [26]. A full description of the algorithm can be found in [36][26],
but here we will limit ourselves to considering the search space expansion. The residual inverse
iteration suggests we expand the search space by

v = M(σ)−1M(λ̂)x̂ , (2.13)

for a fixed shift σ. We emphasize the difference from (2.12). Notice that we have replaced the

inverse evaluated at λ̂ with the inverse evaluated at the fixed value σ, as well as having replaced
M ′(λ̂) by M(λ̂). It should be noted that σ can be changed during the course of the algorithm
as we move from one eigenvalue to another. We also note that (2.13) is not strictly the update
used in the residual inverse iteration, but is equivalent for our projected problem. See [36] for a
short discussion on why this search space update makes the algorithm equivalent to the Arnoldi
update in the linear case.

We also remark that as suggested in [36], we can replace M(σ)−1 ≈ P , and instead compute

the new search direction v = PM(λ̂)x̂, if the solution of the linear system is deemed too expensive.
This preconditioner could be any number of standard choices. One issue that is naturally of
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interest is the convergence properties of the residual inverse iteration. For completeness, we
provide a such a characterization of the convergence, due to [36] and [26].

Theorem 2.3.1. Let M in Definition 2.1.1 be sufficiently smooth, with a simple eigenvalue λ,
and let x be the corresponding eigenvector, normalized by a fixed vector e ∈ Cn, i.e. e∗x = 1.
Then the residual inverse iteration converges for all choices of σ sufficiently close to λ, and it
holds that

∥x̂ℓ+1 − x∥
∥x̂ℓ − x∥

= O (|σ − λ|) , and∣∣∣λ̂ℓ+1 − λ
∣∣∣ = O (∥x̂ℓ − x∥) ,

(2.14)

where
(
λ̂ℓ, x̂ℓ

)
is the approximate eigenpair in iteration ℓ.

□

It is noted in [36] that the rate of convergence of the inverse residual iteration is expected, with
reference to Theorem 2.3.1, to depend on the the distance between the current approximation
of the wanted eigenvalue and the shift σ. Hence, it is advisable to change the shift during the
computations, to ensure we always have an acceptable rate of convergence.

We have now established an approach to choose a new search direction, and thereby have
a strategy for expanding our search space. We are then ready to state the full algorithm. The
nonlinear Arnoldi algorithm can be found in Algorithm 1.

The reader will recognize that the main elements of the framework given in Section 2.2 are
indeed present in Algorithm 1. Now, in [36], Voss provides some additional discussion on various
important elements that are of practical importance when considering the use of NLAR. For
one, a significant portion of [36] is dedicated to a discussion of how one can efficiently solve
the projected problem (2.11). Voss suggests the use of the so-called safeguarded iteration. This
method builds upon the theory of Rayleigh functionals, an extention of the familiar Rayleigh
quotient. While this method is certainly a viable option for solving the projected problem, we
will not consider it further in this text, since solving the projected problem is largely a practical
problem, and will not affect our main contribution significantly. As mentioned earlier, any
number of standard choices of dense NEP solvers will usually serve our purposes in this regard.
See [14] or [12] for exposition on Rayleigh quotients and Rayleigh functionals, and the original
paper by Voss for a discussion on the safeguarded iteration [36].

Continuing our review of NLAR, Voss also gives several suggestions of various optimizations
one could reasonably utilize for problems with certain structure. While we will use some of these
suggestions in the implementation of our numerical experiments, and in some cases extend them
to work better with the current method, we will leave most of them untouched. The suggestions
that we will use, will however be reserved for the implementation details of our main contribution,
and the reader is asked to reference Section 3.2 for our discussion on these. In addition to this,
[36] will of course be an excellent source for implementation details not mentioned in this work.

2.4 Random subspace embeddings

We are now ready to proceed with examining the essential tool for this work, namely randomized
subspace embeddings. Much of this exposition can be found in more detail, and with greater
scope, in a number of excellent survey papers on the subject of randomized numerical linear
algebra. For instance, [23] provides a thorough introduction to the subject, with treatment of
algorithms ranging from randomized trace estimation to machine learning applications. [20]
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provides additional theory on subspace embeddings, in addition to a wide variety of topics in
the area. Notably, they also include discussion on randomized methods for tensor computations.
See the references in [23] for a wider selection of surveys on the subject.

Randomized subspace embedding involves the application of a randomly drawn matrix S. In
the literature, this application is often referred to as sketching, and this is the terminology we
will adopt for this work.

Definition 2.4.1. (Subspace embedding). Let V ⊂ Cn be a subset of complex Euclidean space,
and let S ∈ Cs×n be a linear map. Let ε ∈ [0, 1]. Then S is a subspace embedding for V with
distortion ε if for every x, y ∈ V we have the following estimate on inner products over V

⟨x, y⟩ − ε ∥x∥ ∥y∥ ≤ ⟨Sx, Sy⟩ ≤ ⟨x, y⟩+ ε ∥x∥ ∥y∥ . (2.15)

□

Remark 2.4.1. In application, it is assumed that s≪ n, so that the map S induces a reduction
in dimension, while approximately retaining the ”geometry” of the subspace being embedded.
For this to be true, it will of course also be desirable to have ε≪ 1. Intuitively, a larger embedding
dimension would permit us to choose the embedding distortion smaller, and a smaller embedding
size would allow us to do less computational work. It turns out however, that these are competing
choices.

The reason for introducing this subspace embedding is that we hope to work with a reduced, or
sketched, version of our (presumably large) problem. If we can additionally construct a subspace
embedding that preserves important qualities of our problem, we hope to achieve similar results
as for the full problem, while doing work only on quantities of smaller dimensionality. At the
moment it is not entirely clear how such an embedding would be constructed, or if such an
embedding even exists in general.

While the proof is beyond the scope of this text, such an embedding does indeed exist. In their
now classic paper [19], Johnson and Lindenstrauss established that points in higher dimensional
space can be embedded into lower dimensional space, with a relatively small distortion. They
originally showed this result in the context of the geometry of Banach spaces, and the reader is
encouraged to consult this reference for further details on their work.

With reference to Definition 2.4.1, we expect to require some knowledge about the specific
structure of the subspace V we are trying to sketch. In application however, this is not always
known a priori, and this is certainly not the case for our purposes, where V will eventually take
the form of a search space that is iteratively expanded. As in [23], we additionally note some
other desirable qualities of S. Firstly, we would like S to be easy to construct and not too
expensive to store. Furthermore, from a computational perspective, we would like the map S
to be easy and fast to apply to our subspace. For instance, if S happens to take the form of
a full matrix, the cost of repeatedly sketching very large vectors may become prohibitive, and
hinder the performance gains of the method. It may additionally be deemed to expensive to
store explicitly if memory is scarce.

The solution to these problems is to draw the sketching matrix from a probability distribution.
Many such distributions have been proposed, among them Gaussian matrices [23], Rademacher
matrices [1], and sub-sampled randomized Fourier and trigonometric transforms [13]. Such ma-
trices drawn at random are often called oblivious subspace embeddings, since they are agnostic
as to the specific space being handled.

Definition 2.4.2. The matrix S, taking values in Cs×n, is an (ε, δ) oblivious subspace embedding
for any fixed subspace V ⊂ Cn if it is a subspace embedding with distortion ε for V with
probability at least 1− δ, where δ ∈ [0, 1].
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□

It is important to emphasize that the matrix S is drawn at random from a underlying distri-
bution, some examples of which where mentioned above. We also emphasize that an oblivious
subspace embedding can be constructed without knowledge of the space V that we wish to em-
bedd, with the exception of its dimension. In this way, we require no prior knowledge of the space
in question, but the challenge of constructing an embedding complying with Definition 2.4.2 still
remains. To this end, we continue by way of presenting some explicit constructions of oblivious
subspace embeddings, that will be employed in our method.

Remark 2.4.2. The theoretical background underpinning the validity of the oblivious subspace
embeddings employed in this work is, while present, somewhat hazy in comparison with the
theory for other (less structured) approaches to subspace emebedding. However, the techniques
used in this work have the same, or better, practical performance as that of many of the ap-
proaches that have more rigorous theoretical guarantees. For this reason, we will be sparse in our
theoretical handling of these techniques, and refer the reader to empirical investigation, and the
theory applicable for other types of less structured embeddings. For a discussion on theoretical
guarantees for e.g. Gaussian embeddings, see [13].

To begin our construction of a practical randomized subspace embedding, we provide some
intuition about their rationale. Much of this reasoning is due to [13] and [2]. One of the most
important features of any performant random subspace embedding is an initial mixing step of
the coordinates of, say, a vector that we wish to embedd. To be explicit, Definition 2.4.2 is also
applicable to single vectors of a space, and it is in this capacity that the embedding will be most
frequently referenced. The random embedding should in this sense homogenize the coordinates
in such a way that each coordinate carries about the same amount of energy after the mixing
step. In this way, we can then sample the mixed vector randomly and hope that the initial
mixing has distributed the characteristics of the vector such that our random sampling will be
of low variance, and provide a good stand in for the original information in the vector. It is
paramount to note that this embedded vector should of course be of lower dimension than the
original vector we are embedding. Various strategies for random subspace embedding differ in
the way they do the initial mixing, and an overview of different methods is provided in [13].

In the present work, we will employ a specific embeddings strategy that is part of a larger
family of such embeddings, namely subsampled randomized trigonometric transforms (SRTTs).
The reason for employing trigonometric transforms may seem unclear, but is made concrete in
[2]. We will not attempt to give a thourough analysis of the reasoning behind this, and the reader
is referred to this resource for exposition on the importance of this choice for the performance
of the method, as well as an interesting connection with the Heisenberg uncertainty principle.
Now, to concretize our choice of random embedding, let D ∈ Cs×n be the diagonal projector
obtained by uniformly selecting s rows of the identity matrix I at random, or equivalently D
is the matrix that unifornly selects s rows of its input (in the sense of right multiplication) at
random. In the terminology of [13], D is a random restriction. Continuing, we let E ∈ Cn×n be
a diagonal matrix whose entries are indepenantly Rademacher-distributed. A random variable is
Rademacher if it is uniformly distributed over the set {−1, 1}. Finally, we take F ∈ Cn×n to be
a discrete trigonometric transform matrix. Specifically, in this work we have employed a discrete
cosine transform. Then, our random subspace embedding matrix S ∈ Cs×n is given by

S =

√
n

s
DFE .

For completeness, we provide a definition of our SRTT.
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Definition 2.4.3. A subsampled randomized trigonometric transform is given by

S =

√
n

s
DFE , (2.16)

where D ∈ Cs×n is a diagonal projector randomly selecting s rows of its input, E ∈ Cn×n is a
diagonal Rademacher matrix, and F ∈ Cn×n is a discrete trigonometric transform matrix.

□

Remark 2.4.3. By far the most computationally expensive part in the construction of our ran-
dom embedding, S, is the discrete trigonometric transform. For a naive approach, a trigonometric
transform has quadratic complexity, which quickly becomes detrimental to the performance for
large problems. Our method will therefore naturally make use of fast transforms (e.g. the fast
Fourier transform, fast cosine transform, etc.), which typically have O (n log(n)) complexity.

Now, it still remains to determine how large we need to choose our embedding dimension,
s, to ensure we get a satisfactory distortion of our space after the embedding. Obviously, this
will depend on the dimension of the original space we are embedding. In the literature, the
embedding dimension s is known as the sketching parameter, and this is the terminology we will
adopt. With reference to [19], as well as [25][13], the optimal scaling for the sketching parameter
approximately follows the law

s ≈ n

ε2
, (2.17)

if we wish to embed a n-dimensional space, with distortion ε. In practice, at least in our
application, the dimension of the space n will correspond to the maximum search depth in our
method, since the space V in Definition 2.4.1 corresponds to our search space. Hence, it is
important that our method gives acceptable performance for moderate distortions, say ε = 1/

√
2

(in the sense of expectation), since the scaling of the sketching parameter is rather poor in
relation to the desired distortion. With this in mind, it is customary to choose the sketching
parameter to be on the same order as the maximum search depth, in the context of iterative
methods. Typically we choose two, four, or six times the maximum search depth as our sketching
parameter. This usually gives good performance, while retaining the advantage gained by the
reduction in dimension produced by the embedding.
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3 The sketched nonlinear Arnoldi
method

In this section we present the derivation of our main result, the sketched nonlinear Arnoldi
algorithm. We will begin by motivating our method by comparison with the classical nonlinear
Arnoldi algorithm, presented in the previous chapter. Having established our main approach,
we also point out some implementation details that have been considered in this work, and the
possibility of some that have not been implemented here.

3.1 Derivation of the sketched nonlinear Arnoldi algorithm

We begin by again considering NLAR in the framework presented in Section 2.2 and 2.3. Recall
that one of the main steps in NLAR is solving the projected problem

V ∗M(λ̂)V ŷ = 0 . (3.1)

Again, we notice that the quantity M(λ̂)V ŷ is the residual associated with the Ritz pair (λ̂, V ŷ).
As usual, V denotes the matrix whose columns constitute a basis for the search space, V. As
discussed previously, (3.1) can then be interpreted as requiring the residual to be orthogonal to
the span of the search space.

Having established the concept of oblivious subspace embeddings, we are now ready to comb-
nine this with the construction of NLAR in order to motivate our proposed approach. Recall
that the purpose of an oblivious subspace embedding is to compress a subspace into one that
is of smaller size, while still approximately retaining the geometry of this subspace. The geom-
etry is here to be understood as approximately conserving inner products between vectors, or
collections of vectors. The reader is encouraged to again refer to Definition 2.4.2. In particular,
othogonality conditions will also be approximately conserved. This encourages us to use random
sketching as a tool to approximately capture Galerkin conditions, while significantly reducing
the dimension of the vectors that any algorithm requiring such a condition must operate on.

Explicitly, we propose to replace the Galerkin-type condition (3.1) by the sketched Galerkin
condition

(SV )∗(SM(λ̂)V ŷ) = 0 , (3.2)

that is, requiring that the sketched residual be orthogonal to the sketched span of the search
space. This is the projected problem we will solve in each iteration of our method, where S is an
s× n oblivious subspace embedding as defined in Definition 2.4.2. Naturally, we assume s≪ n,
so that some significant dimensionality reduction is actually taking place. Some comments on
this approach are in order. Initially, this way of replacing the strict Galerkin condition in various
solvers is commonplace in the setting of the sketch-and-solve paradigm [11][34][25], and with
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these works as empirical support for requiring (3.2), this method is expected to work well. It
should however be noted that the listed works all work in the linear setting, but the motivation for
employing this strategy is the same in the linear case as in the nonlinear one. On a more heuristic
note, with reference to Definition 2.4.1, and our previous discussion, the sketched condition is
expected to approximately capture the relationship between the span of the search space and
the residual, in the sense of approximately preserving inner products, and hence we expect
to produce approximations to eigenpairs of similar quality to those generated by (3.1). More
explicitly, as long as the true residual is orthogonal to the search space, the sketched condition
should approximately capture this relationship. Finally, as in [11], we remark that if S = I, then
the sketched problem (3.2) reduces to the classical condition (3.1).

On a high level, this is the core element of the proposed method. However, the benefits of
this approach may not be immeadiately clear, and we will devote the forthcoming section to
addressing the gains that can be made with the randomized algorithm that can not be had with
the classical version. While we will withhold most of these details for now, it is important to
remark on one crucial point, namely on the matter of orthogonalization. The orthogonalization
of the search space basis, V , is imperative to the effectiveness of NLAR, cf. Algorithm 1.

While NLAR does not make any explicit assumption on the orthogonality of the basis, it is
a very important element of the method in practice. Loss of orthogonality is a central problem
in numerical linear algebra, and various accelerated methods of orthogonalization is an active
area of research. See for instance [4] for an application of random sketching in this context. The
absence of an orthogonalization step can often make a method completely break down.

What is important to notice is that while these principles also apply to sNLAR, much of the
work of orthogonalization can be transferred to take place only on sketched vectors, i.e. ones
of very small dimension. As a result of this, when handling the orthogonalization of the non-
sketched basis, V , it is customary within the sketch-and-solve paradigm to make use of so-called
truncated orthogonalization, i.e. only orthogonalizing a small number of vectors against each
other, typically the latest few vectors produced by the method. This strategy has also recently
been combined with a tool often referred to as basis whitening, where in the condition number
of the sketched basis, which is typically large as a result of the truncated orthogonalization, is
reduced by means of a QR-decomposition. Both of these strategies will be clarified shortly, but
it is important for understanding the advantages of the sNLAR to keep these aspects in mind.

3.2 Implementation details

We will now deal with some implementation details that are crucial for obtaining a competetive
algorithm.

The previous section made reference to an alternative to full orthogonalization of the search
space basis, V , namely by using a truncated orthogonalization. This approach has been used
to good success in a number of different works on random sketching in various contexts, see
[25][34][11] for some examples. [34] also discusses some alternative basis construction techniques.
In these works, the orthogonalization is to be understood in the context of the Arnoldi iteration
[3]. The Arnoldi iteration with truncated orthogonalization is therefore often called the truncated
Arnoldi’s method for constructing a basis for, in these cases, a Krylov space.

In this orthogonalization strategy, we only orthogonalize the latest vector produced, by what-
ever subspace expansion strategy is used, against a small number of the previous vectors, typically
4− 6 of the latest basis vectors, although some authors, and the author of this text, have found
that this number can often be made as small as 2 without significantly impacting the performance
of the method.
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One might rightfully conjecture that the condition number of the search space basis would
increase very rapidly under this scheme, soon rendering the basis unusable. This issue is common
to all truncated orthogonalization strategies, and various approaches to combat it have been
proposed. One approach suggested in [25] employs the singular value decomposition of the basis
before solving an associated generalized eigenvalue problem as a means of stabilizaing the basis,
in the sense of its condition number. However, by far the most common and effective technique
that has been proposed was first reported in [31] in the context of solving overdetermined least
squares problems via random sketching. In this article, the authors present a preconditioning
technique that has since been used in the works suggested above to control the rapid growth of
the condition number of the search space basis.

Many authors have since adopted the term basis whitening as referring to this preconditioning
technique. Explicitly, let SV = QR be a thin QR-decomposition of the sketched basis. Then
the basis whitening consists of performing the replacements

SV ←− Q V ←− V R−1 . (3.3)

Notice that the first replacement is in essence an orthogonalization of the sketched basis. As
discussed above, we employ a truncated orthogonalization approach with respect to the non-
sketched basis, i.e. V , but with the basis whitening, the orthogonalization is in a sense transferred
to the sketched basis instead. Since the sketched basis is typically of significantly lower dimension
than the original problem, for medium to large problems often around 1−2% the problem order,
this approach frequently drastically cuts down on the time spent in orthogonalization. The
second replacement is the preconditioning step mentioned above. As the non-sketched basis, V ,
will only be partially orthogonalized each iteration the condition number will rapidly increase.
The right-side application of R−1 will control this condition number, and the condition number
after this application will satisfy the inequality

κ2(V R−1) ≤ 1 + ε

1− ε
, (3.4)

where ε is the distortion induced under the subspace embedding S, cf. Definition 2.4.2, [25][31].
Now, different authors apply this basis whitening step with different frequency. Obviously, the
basis whitening is not free, and we would like to apply it as seldom as possible. For this reason,
some authors advocate for the usage of condition number diagnostics that can be obtained cheaply
by means of the subspace embedding, see for instance the suggestions made in [25]. The naive
approach however, and perhaps the most robust one, is performing the basis whitening every
iteration, thus controlling the basis condition number very effectively. This is the approach we
have adopted in this work, and implementing any savings in computation with regards to this
step will be left as future work.
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Algorithm 2 The sketched nonlinear Arnoldi method for M(λ)x = 0

1: input: sketching matrix S, truncation length t, pole σ, initial basis vector v, ∥v∥ = 1
2: output: eigenpair approximations
3: k = 1, m = 0, V = v, SV = Sv
4: while m < number of wanted eigenvalues and k < max iterations do
5: compute thin QR-decomposition, SV = QR
6: whiten basis SV ← Q, V ← V R−1

7: solve projected problem (SV )∗(SM(µ)V y) = 0
8: compute Ritz vector u = V y and residual rk = M(µ)u
9: if rk < tol then

10: save eigenpair (µ, u)
11: m = m+ 1
12: choose approximations µ and u to next eigenpair
13: compute residual r = M(µ)u
14: end if
15: v = M(σ)−1M(µ)u
16: orthogonalize v against span{V:,k−t+1:k}
17: v = v/ ∥v∥
18: expand basis V = [V, v]
19: expand sketched basis SV = [SV, Sv]
20: k = k + 1
21: end while
22: return computed eigenpairs

We are now ready to state the first practical version of the algorithm. It can be found in
Algorithm 2.

Having established a way to deal with the consequences of the truncated orthogonalization,
and thus constructing a practically viable method, we will mention one aspect of the implemen-
tation that was also suggested in [36], and adapted here for the use in our proposed method.
Recall that many NEPs are on the form of a SPMF-NEP, cf. Definition 2.1.2. For this particular
structure, the construction of the projected problem can be formulated in a way that makes very
efficent use of the projected problem constructed in the previous iteration, saving some computa-
tion. In particular, we notice that when projected, every term in (2.2) will simply be augmented
by a left multiplication by V ∗, and a right multiplication by V . Since multiplication by a scalar
function is commutative, this operation will only affect the matrix factor of every term, and
hence it is only this matrix that needs to be altered from iteration to iteration. Explicitly, the
projection of a SPMF will take the following form, where we have denoted by Vk the full basis
in iteration k. We have

V ∗
k M(λ)Vk =

ℓ∑
i=1

V ∗
k AiVkfi(λ) :=

ℓ∑
i=1

Ai,kfi(λ) . (3.5)

Now, as noted above, we only need to consider how to alter the matrices from iteration to
iteration, and the functions can safely be ignored. Suppose therefore that we have access to the
problem matrices from the previous iteration k − 1, i.e. Ai,k−1 for i = 1, . . . , ℓ, and we would
like to construct the matrices corresonding to the current iteration, k.

Following [36], we notice that the matrices can be expanded in the following way
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Ai,k =

(
Ai,k−1 V ∗

k−1Aivk
v∗kAiVk−1 v∗kAivk

)
. (3.6)

Here, vk is the latest basis vector produced, i.e. Vk = [Vk−1, vk]. One element of this approach
that is important to remark on is that the matvecs involved in this expansion cannot be recovered
from the previous projected problem, but must to a large part be recomputed each iteration,
unless we want to explicitly store the reduced matrices AiV for each term of our NEP. If the
problem is particularly large, or the memory limitations particularly stringent, this might not be
feasible. However, as we will see, the equivalent expansion strategy for our proposed method do
not suffer from this limitation to the same extent, thanks to the subspace embedding strategy.

Then, let us consider this strategy for the sketched Galerkin condition (2.11). In this case,
and assuming we are still dealing with a SPMF-NEP, our problem now assumes the form

(SVk)
∗(SM(λ)Vk) =

ℓ∑
i=1

(SVk)
∗(SAiVk)fi(λ) , (3.7)

and in similarity with the form (3.6), we can epand the projected problem in the next iteration
by expanding the problem matrices by one row and one column. Explicitly, we have the termwise
expansion formula

(SVk)
∗(SAiVk) =

(
(SVk−1)

∗(SAiVk−1) (SVk−1)
∗(SAivk)

(Svk)
∗(SAiVk−1) (Svk)

∗(SAivk)

)
, (3.8)

with i = 1, . . . , ℓ. Now, notice that as with the non-sketched projected problem, the upper left
block matrix is the projected problem from the previous iteration. Furthermore, the expansion
strategy (3.8) shares another quality with the classical approach, namely that the matvec involved
in computing this expansions can not be retrieved from the previous projected problem. However,
for the sketched method, this is slightly more problematic than for the classical method. To see
this, notice for instance that the expression SAiVk−1 needs to be evaluated each iteration, i.e. we
need to sketch the full search space basis times the problem matrix, for every term in the NEP.
This is not free and presents a considerable overhead in the computation, cf. Section 2.4. The
need to repeatedly sketch a potentially very large matrix can quickly overwhelm the performance
of the method, and render it inferior, in terms of comlexity, to the classical method.

Now, we remarked that for the classical method, this shortcoming of the approach cannot
really be remedied without explicitly storing the matrices AiVk−1, for i = 1, . . . , ℓ, something
that might not always be feasible. However, this is not as much of a concern for our proposed
method, since we only need to store the matrices SAiVk−1, which will be of significantly smaller
dimension than AiVk−1, and in general only be of moderate size. Hence, it is feasible to explicitly
store these sketched matrices, and they can also be iteratively expanded during the course of the
algorithm. This means that the approach (3.8) only needs to sketch one additional vector per
iteration, as opposed to repeating previous computations. This alternative method does induce
some additional memory costs as a trade-off, but as mentioned this will not be limiting in most
applications due to the small size of the matrices involved.

Another aspect that might then be of concern is the way in which we iteratively expand the
matrices SAiV , i = 1, . . . , ℓ, during the course of the execution of the algorithm. More precisely,
these matrices will suffer from the same rapid growth of condition number as the matrics V and
SV , unless accounted for. One approach is to apply the preconditioner from the basis whitening
(3.3) to SAiV each iteration and for each i, but we have found it sufficient in practice to simply
compute SAivk after the basis whitening step, where vk is the latest basis vector computed. We
have observed good stability characteristics and performance of this approach, and this is the
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strategy we will adopt for the remainder of this text. However, if the resources are available,
application of the preconditioner R−1 might be more robust, cf. the use in [11] or [25]. Further
investigation of this will be left for future work.

Algorithm 3 The sketched nonlinear Arnoldi method for
(∑ℓ

i=1 Aifi(λ)
)
x = 0

1: input: sketching matrix S, truncation length t, pole σ, initial basis vector v, ∥v∥ = 1
2: output: eigenpair approximations
3: k = 1, m = 0, V = v, SV = Sv, SAiV = SAiv for i = 1, . . . , ℓ
4: while m < number of wanted eigenvalues and k < max iterations do
5: compute thin QR-decomposition, SV = QR
6: whiten basis SV ← Q, V ← V R−1

7: SAiV = [SAiV, SAiv] for i = 1, . . . , ℓ
8: expand projected problem according to (3.8)
9: solve projected problem (SV )∗(SM(µ)V y) = 0

10: compute Ritz vector u = V y and residual rk = M(µ)u
11: if rk < tol then
12: save eigenpair (µ, u)
13: m = m+ 1
14: choose approximations µ and u to next eigenpair
15: compute residual r = M(µ)u
16: end if
17: v = M(σ)−1M(µ)u
18: orthogonalize v against span{V:,k−t+1:k}
19: v = v/ ∥v∥
20: expand basis V = [V, v]
21: expand sketched basis SV = [SV, Sv]
22: k = k + 1
23: end while
24: return computed eigenpairs

For completeness, we explicitly provide the algorithm specialized for SPMF-NEPs. See Al-
gorithm 3.

We will also note an additional approach that could present an alternate way of reducing
the cost of sketching when expanding SPMF-NEPs. Since matrix multiplication is associative,
one could conceivably sketch the problem matrices before beginning the computations, thus
circumventing the issue of having to repeatedly sketch the entire basis, instead reducing the
problem to a regular matvec. This is not strategy that we have explored, and is left as a
suggestion for future work.
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4 Numerical experiments

This section considers some numerical experiments to characterize the performance of sNLAR.
Initially we consider a NEP that is a perturbation of a linear problem with known spectrum,
with the aim of validating the performance of our method compared to the classical approach.
We also provide a larger problem showcasing the competetiveness of our approach.

4.1 A nonlinearly perturbed linear problem

To begin, we consider a NEP that is a perturbation of a linear problem. This type of problem
is common in application. For instance, in [36], this type of NEP arises in the modeling of a
nonproportionally damped vibrating structure, modeled with the finite element method. An-
other example with a connection to the modelling of vibrating structures, also resulting in a
nonlinearly perturbed problem, can be found in [33]. More specifically, we will consider a low
rank perturbation, i.e. a problem on the form(

A− λI +
uwT

σ − λ

)
v = 0 , (4.1)

where A ∈ Cn×n is a matrix with known spectrum, I is the identity, and u,w ∈ Cn and σ ∈ C
are chosen arbitrarily, but in a way that does not make the problem unreasonable. Furthermore,
the spectrum of the linear part of the problem is chosen such that we expect to be able to
control the rate of convergence of the method. In particular, we would like to validate that the
sNLAR-approximant is close to the approximations computed with NLAR. We expect sNLAR
to work well when NLAR does for the same reasons elucidated in [13], and the purpose of this
problem is to gain insight into this assumption. Since NLAR is equivalent to Arnoldi’s method for
linear eigenproblems [36], we can expect that if the nonlinear perturbation in (4.1) is sufficiently
small (in the sense of some matrix norm) NLAR would have similar convergence characteristics
to the linear Arnoldi method. It is known that the linear Arnoldi method readily converges to
extreme eigenvalues, and that the rate of convergence is dependent on the distance of the extreme
eigenvalues to the rest of the spectrum. Then, to control the rate of convergence in this example,
we will let the spectrum of the linear part of the problem consist if a disc of eigenvalues, with
one extremal eigenvalue. The problem is constructed such that the matrix for the linear part
is large and sparse, with a dominant ridge structure. The construction of this matrix employed
techniques similar to the ones presented in [6].

We solve this problem with the sketching parameter set to two times the maximum number
of iterations, and the orthogonalization truncation length set to 2. The maximum search depth
is set to 50. The results from this problem can be seen in Figure 4.1.
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Figure 4.1: Convergence of sNLAR and NLAR on the perturbed problem (4.1). For sNLAR,
the sketching parameter is set to two times the maximum search depth, and the truncation length
is set to 2. The problem size is n = 1500. The figure also shows the eigenvalue condition number
scaled by the machine precision for the outlier eigenvalue, where we have used the expression
(2.9). We see that sNLAR converges down to the condition number of the eigenvalue, while
NLAR does not manage to converge fully.

From Figure 4.1, we see that sNLAR successfully finds the outlier eigenvalue, while NLAR
fails to do this to a satisfactory accuracy. Notice that the error is bounded from below by the
normwise condition number of the eigenvalue multiplied by the machine precision. This is to be
expected, and in practice the condition number of an eigenvalue often acts as a lower bound on
the minimum obtainable error for many methods, as discussed in Section 2. We observe distinct
spikes in the convergence of the randomized method. These spikes seem to be inherent to many
sketched methods, especially when the sketching parameter is set relatively low, see [34] for a
discussion on this phenomenon, as well as our discussion in Section 5.

This example shows that sNLAR converges as expected, closely mirroring the convergence of
the classical method, and in this case appears to outperform it.

4.2 An example from electromagnetic accelerator
modelling

We will now consider a more ambitious problem, that has become a standard benchmark in
the literature. It was first introduced in [22], and has since become known as the gun-problem.
The problem stems from a finite-element discretization of Maxwell’s equations in the context
of accelerator modelling. For the derivation and physical details, see for instance [22][16]. For
our purposes however, it will suffice to consider the large and sparse NEP that results from this
discretization. Let our problem be defined by the function

M(λ) = A0 − λA1 + i
√

λ− σ2
1A2 + i

√
λ− σ2

2A3 . (4.2)
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The reader will note that the problem contains square roots, and these are defined as the principal
branch of the complex square root. Further, we will choose σ1 = 0 and σ2 = 108.8774, to comply
with the standard form of this benchmark. Here, A0, A1, A2, and A3 are large and sparse, with
dimension n = 9, 956. This problem is readily available in the problem collection [7].

As in [18], we note that the region of interest is away from the branch points λ = 0 and
λ = σ2

2 . That is, we are interested in Re λ > σ2
1 . It is common to shift and scale the problem

to transform the region of interest to be approximately within unit length. I.e. we consider the
transformed problem λ̂ = αλ+β, where α = 3002−2002, and the shift is chosen to be β = 2502,
cf. [18][22].

Figure 4.2: Convergence history of sNLAR and NLAR. Eigenvalues are computed to a tolerance
of 10−8. Each time an eigenvalue is found, the method moves on to the next one, producing the
spikey appearance in the plot. Notice that the convergence history of sNLAR follows that of NLAR
closely, although sNLAR sometimes requires a few more iterations to converge. Notice also that
NLAR appears to stagnate during the computation of the eighth eigenvalue, while sNLAR does
not. However, this may be an artefact of how the error is measured. Both methods are started
identically. The sketching parameter was chosen as 4 times the maximum number of iterations,
and we choose the maximium number of iterations to be 40, i.e. sNLAR is operating on vectors
of size 160. sNLAR uses an orthogonalization truncation length of 4.
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Figure 4.3: Computed spectrum from sNLAR, NLAR, and from [22], in square-root scale.
Notice that sNLAR succeeds in computing all eight eigenvalues in the desired cluster, while NLAR
manages to compute seven of them. Also notice that we find some eigenvalues of the cluster not
reported by Liao et al.

Since the convergence of our method depends heavily on the distance between the shift,
σ, and the eigenvalue currently being approximated, cf. Theorem 2.3.1, we will focus only on
finding smaller groups of eigenvalues, as opposed to finding all eigenvalues within the region of
interest. Notice that the shift σ in the methods is independant of the shift of the problem, α.
Rather, after we have transformed our problem to be within unit magnitude, our shift σ will
typically be between 0 and 1, controlling where in the region of interest we would like to search for
eigenvalues. We will adopt this strategy since the eigenvalues of our problem are fairly clustered,
see [18]. Were we to try and find all eigenvalues in the region, we would quickly observe stagnated
convergence after the initial group of eigs has converged. Hence, the computational task is as
follows; we want to find all eigenvalues in the cluster of eight eigenvalues in the right-most part
of the region of interest, cf. [18], to a tolerance of 10−8. We compare the performance of sNLAR
with that of NLAR. The convergence of both methods for this task can be seen in Figure 4.2,
and Figure 4.3 shows the computed spectrum of the problem in comparison with the spectrum
computed in [22]. Cf. also the spectrum computed in [18].

We see that sNLAR is successful in computing the desired part of the spectrum. Figure 4.3
also shows that we manage to compute a few eigenvalues that where not captured by the method
in [22]. They are however included in the spectrum computed in [18]. From the convergence
history of sNLAR, we see that it follows the classical method closely, only sometimes requiring
a few more iteratins to converge. It also appears as if the initial approximations when starting
the work on a new eigenvalue are sometimes of lower quality in sNLAR. However, as with the
classical method, the convergence is exceedingly rapid after this, and so this does not represent
a significant shortcoming of the method.

Another aspect of the converge that is interesting to note is that for this problem, the spikes
in the error that are so charachteristic to linear randomly sketched methods [34][11], seem to
be absent. Even though the sketching parameter is relatively small, four times the maximum
search depth for this example, the convergence appears very smooth. For context, this means
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that sNLAR operates on vectors of size 160, i.e. vectors that are around 1− 2% the original size
of the problem. This example highlights the massive reduction in dimension that is possible with
this class of method. However, it is also possible that the lack of irregular convergence is simply a
result of the extremely rapid convergence, and that the charachteristic spikes in the convergence
would once more materialize in problems where the convergence speed is more moderate.

Figure 4.4: Convergence history over 20 runs of sNLAR, with the objective of finding 1 eigen-
value in the ”gun” benchmark. The sketching paramter is set to be four times the maximum
number of iterations, and the truncation length in the orthogonalization is chosen to be 4. The
maximum number of iterations is taken to be 20. The randomization is seeded differently each
run, but the shift σ is the same each run. The figure also records the combined best-worst interval
over all the runs.

Continuing, we will take the opportunity to use this example as the basis for validating the
robustness of the current method. More precisely, since the method contains randomization
as one of its core elements, it is important to understand how this affects the consistency of
the algorithm. I.e. how much do the results change over a larger sample of runs. To try and
resolve this question, we will focus on computing only one eigenvalue of the same benchmark
problem as above, but we will repeat the computation a number of times, with differently seeded
randomization each time. In particular, we will perform 20 runs of the method, with the tolerance
set so low that we record the entire convergence history of the method while computing this one
eigenvalue. The parameters of sNLAR are set to the same values as in the example above, with
the exception of setting the maximum number of iterations to 20, to not record an unnecessary
amount of history once the method has already converged to machine precision.

The results from these computations are related in Figure 4.4. Comparing the convergence
characteristics with those of Figure 4.2, we see that the convergence is very similar in the intial
part of the computations, but that significant spikes in the deacy of the residual error begin to
appear after around eight or so iterations. This explains why these spikes were mostly absent
from the earlier convergence plot.

At an initial inspection, it might appear as if these spikes completely dominate the conver-
gence of the method, and that they might be highly detrimental to the robustness of sNLAR.
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While they absolutely affect the usage of the method, and in some cases they do warrant some
careful treatment, this initial impression is largely an artefact of the way that these error-curves
are presented here. While the convergence does suffer from these occasional spikes, it is not
sporadic to the point of making the method unreliable. Many of the spikes occur only once the
error is approaching machine precision, and the general trend indicates that the presence of a
spike in the error does not inhibit further decrease in the error, or even indicate stagnated con-
vergence in continued computation Furthermore, in the presence of a robust stopping condition,
perhaps an extension of the type of condition suggested in [11], these spikes really do not become
a problem unless very stringent tolerance conditions are imposed. The spikes rarely last more
than a handful of iterations, and the method quickly recovers from these anomalies, continuing
to generate high-quality approximations.

In conclusion, these experiments seem to indicate that the method is fairly robust, certainly
robust enough for consistently generating high quality approximations of the desired eigenpairs,
and the characteristic error-spikes present in linear methods, e.g. as shown in [34][11], also
manifests themselves in this nonlinear application of the randomized sketching framework.
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5 Conclusions and outlook

We have presented a novel method, namely an application of the sketch-and-solve paradigm to
nonlinear eigenproblems. Our method is built upon the NLAR method due to Voss [36], but
modifies this method by introducing a random subspace embedding, allowing us to significantly
lower the dimensionality of the problem.

We have also verified our approach by a number of numerical experiments, indicating good
performance, and indeed comparable performance to the classical NLAR method. In addition,
our approach has been motivated by various analog methods for the linear eigenproblem, cf.
Section 3.

A number of comments are due. Firstly, we mention some shortcomings of sNLAR, in addition
to some advantages over the classical method. Initially, we note that for the problems we have
investigated, we have not observed speed-ups, in terms of computation time, to the extent that
has been observed for some linear problems, see for instance [25]. In [25], the authors report
speed-ups of a factor of up to 100. The main reason for this extreme performance advantage over
classical methods is that their randomized method, in the same manner as our proposed method,
utilizes a truncated orthogonalization strategy. In linear problems, the orthogonalization is often
the dominating step in the computation, and hence very large reductions in computation are
available for any strategy minimizing this. Traditional methods for reducing the time spent
in orthogonalization include restarting, see for example [9], but as we have seen, the sketching
framework offers an attractive alternative to this approach.

Now, the reason we do not see comparable speed-ups for our problems in mainly due to this
dominance of the orthogonalization being absent. More precisely, the solution of the projected
problem, and the solution of the linear system when solving for the next search direction, are
by far the most computationally intensive steps of our method. The main appeal of sketched
methods is that they significantly reduce the time spent orthogonalizing the search space basis,
and if this step is not a significant contributor to the over all complexity, we simply do not obtain
reductions in complexity comparable to many linear problems.

However, there are other benefits to be had when employing a sketched method such as
sNLAR. In particular, such methods unlock opportunities for implementation in modern highly
parallel environments. In these environments, orthogonalization induces a global syncroniza-
tion step, and since communication between processes is the main bottleneck in these modern
arcitechtures, any reduction in the amount of orthogonalization needed for the algorithm to be
performant is highly attractive. See for instance [5][29] for discussions on the role of orthogonal-
ization in modern computing environments. Since our method heavily cuts down on the amount
of orthogonalization that needs to be performed, it could find use in cases such as this, since
the performance in terms of accuracy appears to be comparable to the classical method, from
our experiments. Since the dominating steps in terms of computation time, are present in both
NLAR and sNLAR, the methods achieve similar performance in this regard.

Finally, with regards to the gains made form reduced orthogonalization, we remark that for
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some problems we might see more significant reduction in computation time. The NEPs we
have chosen to use as demonstration in this work, while fairly large, dwindle in comparison with
other problems when it somes to shear size. Furthermore, we have employed the infinite Arnoldi
method [18] for the solution of the projected problem. We have chosen to use this method
mainly due to its very reliable stability characteristics, and tendency to be very robust in finding
a large number of eigenvalues, see [18]. However, the method comes with some overhead, and
other methods might be more suitable if computation time is of greater importance, for instance
a Newton-type solver, which typically boasts quadratic convergence and less overhead. The
combination of using a medium scale problem, together with the chosen inner solver, may have
contributed to making the time spent in othogonalization even more insignificant when compared
to the other elements of the algorithm. Hence, when dealing with very large problems where
orthogonalization becomes more influential, in combination with using a different solver for the
projected problem, we might see a more significant reduction in the computation time.

There are a number of questions about sNLAR that still need answering. The convergence
characteristics of our method have not been investigated theoretically in this work. One reason
for this is that the convergence of NLAR is still not well understood theoretically. For this
reason, it will likely be very difficult to gain understanding about our proposed method without
first gaining some grip on the classical method. However, while a full understanding of sNLAR
might be intractable for the moment, it would still be interesting to construct a bound on the
distance from the sNLAR approximant to that of NLAR. This approach has been adopted for
various application when a full understanding of the theoretical aspects of a randomized method
might not be feasible. For instance, [11] and [34] both employ this approach. It is possible that
a construction similar to the one in [34] might be a fruitful approach for such a characterization
of the sNLAR approximant. If a bound to the NLAR approximant could be established, the
empirical evidence for the performance of NLAR would also speak in favor of sNLAR. Since
NLAR has enjoyed years of practical use to good success, this would be strong support for
sNLAR.

Another aspect of the convergence of sNLAR that might be of concern, and seems to be almost
universal among sketched methods, are the occasionally very large spikes in the convergence that
can be observed in Figure 4.4. See also the references provided above for other examples. These
spikes are still not well understood, partly because they seldom are of practical concern and
can often be dealt with effectively. Some theoretical work has been done on the issue, but the
phenomenon is still not fully understood. In [34], the authors observe that the spikes in the
convergence correlates strongly with a difference in the Ritz values generated in the classical and
randomized methods, respectively, but they make no further investigations into this observation.
Perhaps this could be one possibly way to characterize the convergence of these sketched methods.

Other possible theoretical approaches include [28], where the authors establish a theoretical
framework for sketched Krylov-type methods, in the context of matrix functions. Perhaps some
of this machinery could be leveraged in the context of our proposed method.

In conclusion, we have presented a novel method for the solution of large and sparse NEPs,
demonstrated good performance, with comparable characteristics to the nonlinear Arnoldi method,
and while many theoretical questions remain, our experiments have demonstrated the practical
potential of our approach. sNLAR also has the possibility of finding use in various settings within
numerical linear algebra, for instance in highly parallel environments, making it an attractive
alternative for the solution of NEPs.
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