From eigenvector nonlinearities to eigenvalue nonlinearities

Nordic NLA 2025 Uppsala, August 19-20 2025

Vilhelm P. Lithell KTH Royal Institute of Technology

Joint work with Elias Jarlebring (KTH)

Outline for this talk

- 1. Introduction
- 2. A motivating application
- 3. Problem statement & method
- 4. Numerical example
- 5. Conclusion and outlook

Introduction

We are concerned with **two types of nonlinear eigenvalue problems**, that have both received significant attention in the NLA community.

Problem 1: NEPv (our main problem today)

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$A(v)v = \lambda v, \quad ||v|| = 1,$$

where $A(v) \in \mathbb{R}^{n \times n}$ is symmetric and maps vectors to matrices.

Problem 2: NEP

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$M(\lambda)v = 0$$

where $M(\lambda) \in \mathbb{R}^{n \times n}$ is symmetric and maps scalars to matrices.

Introduction

We are concerned with **two types of nonlinear eigenvalue problems**, that have both received significant attention in the NLA community.

Problem 1: NEPv (our main problem today)

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$A(v)v = \lambda v, \quad \|v\| = 1,$$

where $A(v) \in \mathbb{R}^{n \times n}$ is symmetric and maps vectors to matrices.

Problem 2: NEP

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$M(\lambda)v = 0,$$

where $M(\lambda) \in \mathbb{R}^{n \times n}$ is symmetric and maps scalars to matrices.

Introduction

We are concerned with **two types of nonlinear eigenvalue problems**, that have both received significant attention in the NLA community.

Problem 1: NEPv (our main problem today)

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$A(v)v = \lambda v, \quad \|v\| = 1,$$

where $A(v) \in \mathbb{R}^{n \times n}$ is symmetric and maps vectors to matrices.

Problem 2: NEP

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$M(\lambda)v=0$$
,

where $M(\lambda) \in \mathbb{R}^{n \times n}$ is symmetric and maps scalars to matrices.

A motivating application: the Gross-Pitaevskii eq.

Left: velocity distribution in condensate. Source: Nobel prize report '01.

Right: quantized vortices in superconductor. Source: Wells et. al. '15.

- Cooling a gas of bosons to ultra-low temperatures results in an exotic state of matter: a Bose-Einstein condensate
- Theoretically predicted in 1925 by Bose and Einstein
- Verified experimentally in 1995 → Nobel prize to Cornell, Ketterle, and Wieman!
- Modeled by the Gross-Pitaevskii equation (GPE)
- Discretization yields NEPv with cubic terms

Stationary GPE, continuous setting

Find u(x), $x \in \mathbb{R}^d$, d = 2, 3, and $\lambda \in \mathbb{R}$ such that

$$\underline{-\Delta u(x)} + \underline{V_{tr}(x)u(x)} + \underline{\kappa|u(x)|^2u(x)} = \lambda u(x), \quad ||u|| = 1.$$

linetic energy Potential energy Particle interaction

Stationary GPE, discrete setting

$$\left(-L_n + D + \kappa \left[(e_1^T v)^2 e_1 e_1^T + \dots + (e_n^T v)^2 e_n e_n^T \right] \right) v = \lambda v, \quad ||v|| = 1.$$

Stationary GPE, continuous setting

Find u(x), $x \in \mathbb{R}^d$, d = 2, 3, and $\lambda \in \mathbb{R}$ such that

$$-\Delta u(x) + \underbrace{V_{tr}(x)u(x)}_{\text{Kinetic energy}} + \underbrace{V_{tr}(x)u(x)}_{\text{Potential energy}} + \underbrace{\kappa |u(x)|^2 u(x)}_{\text{Particle interactions}} = \lambda u(x), \quad ||u|| = 1.$$

Stationary GPE, discrete setting

$$\left(-L_n + \frac{D}{D} + \kappa \left[(e_1^T v)^2 e_1 e_1^T + \dots + (e_n^T v)^2 e_n e_n^T \right] \right) v = \lambda v, \quad \|v\| = 1.$$

Stationary GPE, continuous setting

Find u(x), $x \in \mathbb{R}^d$, d = 2, 3, and $\lambda \in \mathbb{R}$ such that

$$\underbrace{-\Delta u(x)}_{\text{Kinetic energy}} + \underbrace{V_{tr}(x)u(x)}_{\text{Potential energy}} + \underbrace{\kappa |u(x)|^2 u(x)}_{\text{Particle interactions}} = \lambda u(x), \quad ||u|| = 1.$$

Finite differences

See, e.g., [Henning, Målqvist,

SIAM J. Numer. Anal. '17], and refs.

for more general discretization techniques

Stationary GPE, discrete setting

$$\left(-L_{n}+D+\kappa\left[(e_{1}^{T}v)^{2}e_{1}e_{1}^{T}+\cdots+(e_{n}^{T}v)^{2}e_{n}e_{n}^{T}\right]\right)v=\lambda v,\quad \|v\|=1.$$

Stationary GPE, discrete setting

$$\left(-L_{n}+D+\kappa\left[(e_{1}^{T}v)^{2}e_{1}e_{1}^{T}+\cdots+(e_{n}^{T}v)^{2}e_{n}e_{n}^{T}\right]\right)v=\lambda v,\quad \|v\|=1.$$

- Symmetric NEPv
- Ground state typically the smallest eigenvalue, minimizer of the energy in the system
- Often: interested in a few of the smallest eigenvalues
- Challenge: methods for GPE can find the ground state, but no natural way to find several modes

Recall our second problem for today:

Problem 2: NEP

Find eigenpair $(\lambda, \nu) \in \mathbb{R} \times \mathbb{R}^n$ such that $M(\lambda)\nu = 0$ where $M(\lambda) \in \mathbb{R}^{n \times n}$ is symmetric and maps scalars to matrices.

Recall our second problem for today:

Problem 2: NEP

Find eigenpair $(\lambda, \nu) \in \mathbb{R} \times \mathbb{R}^n$ such that $M(\lambda)\nu = 0$ where $M(\lambda) \in \mathbb{R}^{n \times n}$ is symmetric and maps scalars to matrices.

 Mature field see e.g. summary [Mehrmann, Voss, GAMM Mitt. '04] or [Güttel, Tisseur, Acta Numerica '17]

Recall our second problem for today:

Problem 2: NEP

Find eigenpair $(\lambda, \nu) \in \mathbb{R} \times \mathbb{R}^n$ such that $M(\lambda)\nu = 0$ where $M(\lambda) \in \mathbb{R}^{n \times n}$ is symmetric and maps scalars to matrices.

- Mature field see e.g. summary [Mehrmann, Voss, GAMM Mitt. '04] or [Güttel, Tisseur, Acta Numerica '17]
- A wide variety of efficient methods
 - ▶ Newton methods: Quasi-Newton, Block-Newton, Broyden's method,...
 - ▶ Krylov methods: Rational Krylov, Nonlinear Arnoldi, Infinite Arnoldi,...
 - Jacobi-Davidson methods
 - Contour integral methods: Beyn's method,...
 - ► Linearization, specialized structures,...

Recall our second problem for today:

Problem 2: NEP

Find eigenpair $(\lambda, \nu) \in \mathbb{R} \times \mathbb{R}^n$ such that $M(\lambda)\nu = 0$ where $M(\lambda) \in \mathbb{R}^{n \times n}$ is symmetric and maps scalars to matrices.

- Mature field see e.g. summary [Mehrmann, Voss, GAMM Mitt. '04] or [Güttel, Tisseur, Acta Numerica '17]
- A wide variety of efficient methods
 - ▶ Newton methods: Quasi-Newton, Block-Newton, Broyden's method,...
 - ▶ Krylov methods: Rational Krylov, Nonlinear Arnoldi, Infinite Arnoldi,...
 - Jacobi-Davidson methods
 - Contour integral methods: Beyn's method,...
 - ▶ Linearization, specialized structures,...
- Many methods can find several eigenvalues in a natural way

Our approach (simplified case)

GPE-type **NEPv**

Via small poly. sys.

Algebraic **NEP**

$$(A_0 + (a_1^T v)^2 a_1 a_1^T) v = \lambda v$$

$$\left(A_0 + \mu_1^2(\lambda)a_1a_1^T\right)v = \lambda v$$

Illustration

Consider a small example of the NEPv:

Illustration

Consider a small example of the NEPv:

$$\left(\begin{bmatrix} 4 & 1 \\ 1 & 6 \end{bmatrix} - \lambda I + \left(\begin{bmatrix} 3 & 2 \end{bmatrix} v\right)^2 \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \end{bmatrix}\right) v = 0$$

Illustration

Consider a small example of the NEPv:

$$\left(\begin{bmatrix} 4 & 1 \\ 1 & 6 \end{bmatrix} - \lambda I + \left(\begin{bmatrix} 3 & 2 \end{bmatrix} v\right)^2 \begin{bmatrix} 3 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \end{bmatrix}\right) v = 0$$

Then $\mu_1^2(\lambda)$ is given explicitly by the function

$$\mu_1^2(\lambda) = \left(\frac{(\lambda^2 - 10\lambda + 23)^2}{13\lambda^2 - 116\lambda + 281}\right)^{2/3},$$

and the NEP $\left(A_0 - \lambda I + \mu_1^2(\lambda)a_1a_1^T\right)v = 0$ can be solved with any NEP-solver.

GPE-type **NEPv** (single term)

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$\left(A_0 - \lambda I + (a_1^T v)^2 a_1 a_1^T\right) v = 0, \quad \|v\|^2 = 1,$$

where $A_0 \in \mathbb{R}^{n \times n}$ is symmetric.

GPE-type **NEPv** (single term)

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$\left(A_0 - \lambda I + (a_1^T v)^2 a_1 a_1^T\right) v = 0, \quad \|v\|^2 = 1,$$

where $A_0 \in \mathbb{R}^{n \times n}$ is symmetric.

• Define $\mu_1 = a_1^T v$.

GPE-type **NEPv** (single term)

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$\left(A_0 - \lambda I + (a_1^T v)^2 a_1 a_1^T\right) v = 0, \quad \|v\|^2 = 1,$$

where $A_0 \in \mathbb{R}^{n \times n}$ is symmetric.

- Define $\mu_1 = a_1^T v$.
- ullet Distributing v in the eq. above, and using μ_1 , gives us

$$(A_0 - \lambda I)v + \mu_1^3 a_1 = 0$$

GPE-type **NEPv** (single term)

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$\left(A_0 - \lambda I + (a_1^T v)^2 a_1 a_1^T\right) v = 0, \quad \|v\|^2 = 1,$$

where $A_0 \in \mathbb{R}^{n \times n}$ is symmetric.

- Define $\mu_1 = a_1^T v$.
- ullet Distributing v in the eq. above, and using μ_1 , gives us

$$(A_0 - \lambda I)v + \mu_1^3 a_1 = 0$$

• We get $v = \mu_1^3 (\lambda I - A_0)^{-1} a_1$

GPE-type **NEPv** (single term)

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$\left(A_0 - \lambda I + (a_1^T v)^2 a_1 a_1^T\right) v = 0, \quad \|v\|^2 = 1,$$

where $A_0 \in \mathbb{R}^{n \times n}$ is symmetric.

- Define $\mu_1 = a_1^T v$.
- ullet Distributing v in the eq. above, and using μ_1 , gives us

$$(A_0 - \lambda I)v + \mu_1^3 a_1 = 0$$

- We get $v = \mu_1^3 (\lambda I A_0)^{-1} a_1$
- Use the normalization $1 = ||v||^2 = |\mu_1^3| ||(\lambda I A_0)^{-1} a_1||^2$

GPE-type **NEPv** (single term)

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$\left(A_0 - \lambda I + (a_1^T v)^2 a_1 a_1^T\right) v = 0, \quad ||v||^2 = 1,$$

where $A_0 \in \mathbb{R}^{n \times n}$ is symmetric.

- Define $\mu_1 = a_1^T v$.
- ullet Distributing v in the eq. above, and using μ_1 , gives us

$$(A_0 - \lambda I)v + \mu_1^3 a_1 = 0$$

- We get $v = \mu_1^3 (\lambda I A_0)^{-1} a_1$
- Use the normalization $1 = ||v||^2 = |\mu_1^3| ||(\lambda I A_0)^{-1} a_1||^2$
- Finally (use 2-norm and symmetry of A_0):

$$\mu_1^2 = \mu_1^2(\lambda) = \left[\frac{1}{a_1^T(\lambda I - A_0)^{-2}a_1}\right]^{2/3}$$

GPE-type **NEPv**

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$, $m \leq n$, such that

$$\left(A_0 - \lambda I + (a_1^T v)^2 a_1 a_1^T + \dots + (a_m^T v)^2 a_m a_m^T\right) v = 0, \quad \|v\|^2 = 1.$$

Equivalent **NEP**

$$\left(A_0 - \lambda I + \mu_1^2(\lambda)a_1a_1^T + \dots + \mu_m^2(\lambda)a_ma_m^T\right)v = 0$$

GPE-type **NEPv**

Find eigenpair $(\lambda, \nu) \in \mathbb{R} \times \mathbb{R}^n$, $m \leq n$, such that

$$\left(A_0 - \lambda I + (a_1^T v)^2 a_1 a_1^T + \dots + (a_m^T v)^2 a_m a_m^T\right) v = 0, \quad \|v\|^2 = 1.$$

Equivalent **NEP**

$$\left(A_0 - \lambda I + \mu_1^2(\lambda)a_1a_1^T + \dots + \mu_m^2(\lambda)a_ma_m^T\right)v = 0$$

GPE-type **NEPv**

Find eigenpair $(\lambda, \nu) \in \mathbb{R} \times \mathbb{R}^n$, $m \leq n$, such that

$$\left(A_0 - \lambda I + (a_1^T v)^2 a_1 a_1^T + \dots + (a_m^T v)^2 a_m a_m^T\right) v = 0, \quad \|v\|^2 = 1.$$

Equivalent **NEP**

$$\left(A_0 - \lambda I + \mu_1^2(\lambda)a_1a_1^T + \dots + \mu_m^2(\lambda)a_ma_m^T\right)v = 0.$$

GPE-type **NEPv**

Find eigenpair $(\lambda, \nu) \in \mathbb{R} \times \mathbb{R}^n$, $m \leq n$, such that

$$\left(A_0 - \lambda I + (a_1^T v)^2 a_1 a_1^T + \dots + (a_m^T v)^2 a_m a_m^T\right) v = 0, \quad \|v\|^2 = 1.$$

Equivalent **NEP**

Find eigenpair $(\lambda, \nu) \in \mathbb{R} \times \mathbb{R}^n$, $m \leq n$, such that

$$\left(A_0 - \lambda I + \mu_1^2(\lambda)a_1a_1^T + \dots + \mu_m^2(\lambda)a_ma_m^T\right)v = 0.$$

• The functions $\mu_1(\lambda), \dots, \mu_m(\lambda)$ are defined implicitly via a **small polynomial system** of m equations in m+1 variables.

GPE-type **NEPv**

Find eigenpair $(\lambda, \nu) \in \mathbb{R} \times \mathbb{R}^n$, $m \leq n$, such that

$$\left(A_0 - \lambda I + (a_1^T v)^2 a_1 a_1^T + \dots + (a_m^T v)^2 a_m a_m^T\right) v = 0, \quad \|v\|^2 = 1.$$

Equivalent **NEP**

$$\left(A_0 - \lambda I + \mu_1^2(\lambda)a_1a_1^T + \dots + \mu_m^2(\lambda)a_ma_m^T\right)v = 0.$$

- The functions $\mu_1(\lambda), \dots, \mu_m(\lambda)$ are defined implicitly via a **small polynomial system** of m equations in m+1 variables.
- ullet It is derived in a fashion similar to the above example. o They exist generically under the assumptions of the implicit function theorem.

Equivalent **NEP**

$$\left(A_0 - \lambda I + \mu_1^2(\lambda)a_1a_1^T + \dots + \mu_m^2(\lambda)a_ma_m^T\right)v = 0.$$

Equivalent **NEP**

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$\left(A_0 - \lambda I + \mu_1^2(\lambda)a_1a_1^T + \dots + \mu_m^2(\lambda)a_ma_m^T\right)v = 0.$$

• We derived an expression for v when m = 1. Similarly for m > 1:

$$v = \mu_1^3 (\lambda I - A_0)^{-1} a_1 + \dots + \mu_m^3 (\lambda I - A_0)^{-1} a_m$$

Equivalent **NEP**

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$\left(A_0 - \lambda I + \mu_1^2(\lambda)a_1a_1^T + \dots + \mu_m^2(\lambda)a_ma_m^T\right)v = 0.$$

• We derived an expression for v when m = 1. Similarly for m > 1:

$$v = \mu_1^3 (\lambda I - A_0)^{-1} a_1 + \dots + \mu_m^3 (\lambda I - A_0)^{-1} a_m$$

• The normalizaition condition gives one eq. We have additionally:

$$(\mu_{\ell} =) a_{\ell}^{\mathsf{T}} v = \mu_{1}^{3} a_{\ell}^{\mathsf{T}} (\lambda I - A_{0})^{-1} a_{1} + \dots + \mu_{m}^{3} a_{\ell}^{\mathsf{T}} (\lambda I - A_{0})^{-1} a_{m},$$

which gives m additional equations, $\ell = 1, \ldots, m$.

Polynomial system

The vector $\mu = [\mu_1, \dots, \mu_m]^T$ satisfies the relations

$$\mu^{3}$$
)^T $G(\lambda)\mu^{3} - 1 = 0$,
 $P(H(\lambda)\mu^{3} - \mu) = 0$,

with $G(\lambda) = A_m^T (\lambda I - A_0)^{-2} A_m$, $H(\lambda) = A_m^T (\lambda I - A_0)^{-1} A_m$.

• In total: m+1 equations in m+1 variables

Polynomial system

The vector $\mu = [\mu_1, \dots, \mu_m]^T$ satisfies the relations

$$(\mu^3)^T G(\lambda) \mu^3 - 1 = 0,$$

 $P(H(\lambda)\mu^3 - \mu) = 0,$

with $G(\lambda) = A_m^T (\lambda I - A_0)^{-2} A_m$, $H(\lambda) = A_m^T (\lambda I - A_0)^{-1} A_m$.

- In total: m+1 equations in m+1 variables
- We must select m equations to define functions μ_1, \ldots, μ_m

Polynomial system

The vector $\mu = [\mu_1, \dots, \mu_m]^T$ satisfies the relations

$$(\mu^3)^T G(\lambda)\mu^3 - 1 = 0,$$

 $P(H(\lambda)\mu^3 - \mu) = 0,$

with
$$G(\lambda) = A_m^T (\lambda I - A_0)^{-2} A_m$$
, $H(\lambda) = A_m^T (\lambda I - A_0)^{-1} A_m$.

- In total: m+1 equations in m+1 variables
- We must select m equations to define functions μ_1, \ldots, μ_m
- ullet Formally: $P \in \mathbb{R}^{(m-1) \times m}$ selects m-1 equations

Polynomial system

The vector $\mu = [\mu_1, \dots, \mu_m]^T$ satisfies the relations

$$(\mu^3)^T G(\lambda)\mu^3 - 1 = 0,$$

 $P(H(\lambda)\mu^3 - \mu) = 0,$

with $G(\lambda) = A_m^T (\lambda I - A_0)^{-2} A_m$, $H(\lambda) = A_m^T (\lambda I - A_0)^{-1} A_m$.

Defining $\mu_1(\lambda), \ldots, \mu_m(\lambda)$

- In total: m+1 equations in m+1 variables
- ullet We must select m equations to define functions μ_1,\ldots,μ_m
- ullet Formally: $P \in \mathbb{R}^{(m-1) \times m}$ selects m-1 equations

Polynomial system

The vector $\mu = [\mu_1, \dots, \mu_m]^T$ satisfies the relations

$$(\mu^3)^T G(\lambda)\mu^3 - 1 = 0,$$

 $P(H(\lambda)\mu^3 - \mu) = 0,$

with $G(\lambda) = A_m^T (\lambda I - A_0)^{-2} A_m$, $H(\lambda) = A_m^T (\lambda I - A_0)^{-1} A_m$.

Defining $\mu_1(\lambda), \ldots, \mu_m(\lambda)$

- In total: m+1 equations in m+1 variables
- ullet We must select m equations to define functions μ_1,\ldots,μ_m
- ullet Formally: $P \in \mathbb{R}^{(m-1) imes m}$ selects m-1 equations

Polynomial system

The vector $\mu = [\mu_1, \dots, \mu_m]^T$ satisfies the relations

$$(\mu^3)^T G(\lambda) \mu^3 - 1 = 0,$$

 $P(H(\lambda)\mu^3 - \mu) = 0,$

with
$$G(\lambda) = A_m^T (\lambda I - A_0)^{-2} A_m$$
, $H(\lambda) = A_m^T (\lambda I - A_0)^{-1} A_m$.

- G, H = transfer functions
- ullet Note: potentially several solutions for one $\lambda o \mathsf{Multi-valued}$ functions

Defining $\mu_1(\lambda), \ldots, \mu_m(\lambda)$

Equivalent **NEP**

Find eigenpair $(\lambda, v) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$\left(A_0 - \lambda I + \mu_1^2(\lambda)a_1a_1^T + \dots + \mu_m^2(\lambda)a_ma_m^T\right)v = 0.$$

Polynomial system

The vector $\mu = [\mu_1, \dots, \mu_m]^T$ satisfies the relations

$$(\mu^3)^T G(\lambda)\mu^3 - 1 = 0,$$

 $P(H(\lambda)\mu^3 - \mu) = 0,$

with
$$G(\lambda) = A_m^T (\lambda I - A_0)^{-2} A_m$$
, $H(\lambda) = A_m^T (\lambda I - A_0)^{-1} A_m$.

Equivalence

 By construction, NEPv-solutions are NEP-solutions. The converse also holds:

Theorem (Thm. 2.3, Jarlebring, L., 2025)

The polynomial system generically defines functions $\mu(\lambda) = [\mu_1(\lambda), \dots, \mu_m(\lambda)]^T$ such that for any (λ_*, v_*) , the following two statements are equivalent.

- The pair (λ_*, v_*) is a solution to the **NEPv**.
- The pair (λ_*, v_*) is a solution to the **NEP** with the functions defined by μ and $\|v_*\| = 1$.

Equivalence

 By construction, NEPv-solutions are NEP-solutions. The converse also holds:

Theorem (Thm. 2.3, Jarlebring, L., 2025)

The polynomial system generically defines functions $\mu(\lambda) = [\mu_1(\lambda), \dots, \mu_m(\lambda)]^T$ such that for any (λ_*, v_*) , the following two statements are equivalent.

- The pair (λ_*, v_*) is a solution to the **NEPv**.
- The pair (λ_*, v_*) is a solution to the **NEP** with the functions defined by μ and $||v_*|| = 1$.

Equivalence

 By construction, NEPv-solutions are NEP-solutions. The converse also holds:

Theorem (Thm. 2.3, Jarlebring, L., 2025)

The polynomial system generically defines functions $\mu(\lambda) = [\mu_1(\lambda), \dots, \mu_m(\lambda)]^T$ such that for any (λ_*, v_*) , the following two statements are equivalent.

- The pair (λ_*, v_*) is a solution to the **NEPv**.
- The pair (λ_*, v_*) is a solution to the **NEP** with the functions defined by μ and $||v_*|| = 1$.
- The polynomial system must be solved for every evaluation of NEP
 - ightarrow We need robust solver for polynomial-system

$$(\mu^3)^T G(\lambda)\mu^3 - 1 = 0$$
$$P(H(\lambda)\mu^3 - \mu) = 0$$

$$w := \mu^3$$

$$w^T G(\lambda)w - 1 = 0$$

 $P((H(\lambda)w)^3 - w) = 0$

"Black box" software (HomotopyContinuation.jl,...)

Reformulation as MEP (Companion linearization)

Solutions to poly. syst. → NEP-eval.

MEP-techniques

 $(A_{10} + w_1 A_{11} + \dots + w_m A_{1m})x = 0$ \vdots $(A_{m0} + w_1 A_{m1} + \dots + w_m A_{mm})x = 0$

MEP-formulation of polynomial system

Using a companion linearization, we can write the polynomial equations as

$$\begin{bmatrix} -1 & w^T G^T \\ w & -I_{m \times m} \end{bmatrix} \begin{bmatrix} 1 \\ w \end{bmatrix} = 0$$

$$\begin{bmatrix} -w_k & 0 & h_k^T w \\ h_k^T w & -1 & 0 \\ 0 & h_k^T w & -1 \end{bmatrix} \begin{bmatrix} 1 \\ h_k^T w \\ (h_k^T w)^2 \end{bmatrix} = 0$$

with h_k^T being the kth row of $H(\lambda)$, and $k=1,\ldots,m-1$.

Transformed system:

$$w^{T}G(\lambda)w - 1 = 0$$
$$P((H(\lambda)w)^{3} - w) = 0$$

MEP-formulation of polynomial system

Using a companion linearization, we can write the polynomial equations as

$$\begin{bmatrix} -1 & w^T G^T \\ w & -I_{m \times m} \end{bmatrix} \begin{bmatrix} 1 \\ w \end{bmatrix} = 0$$

$$\begin{bmatrix} -w_k & 0 & h_k^T w \\ h_k^T w & -1 & 0 \\ 0 & h_k^T w & -1 \end{bmatrix} \begin{bmatrix} 1 \\ h_k^T w \\ (h_k^T w)^2 \end{bmatrix} = 0$$

with h_k^T being the kth row of $H(\lambda)$, and k = 1, ..., m-1.

Transformed system:

$$w^{T}G(\lambda)w - 1 = 0$$
$$P((H(\lambda)w)^{3} - w) = 0$$

MEP-formulation of polynomial system

Using a companion linearization, we can write the polynomial equations as

$$\begin{bmatrix} -1 & \mathbf{w}^T G^T \\ \mathbf{w} & -I_{m \times m} \end{bmatrix} \begin{bmatrix} 1 \\ \mathbf{w} \end{bmatrix} = 0$$

$$\begin{bmatrix} -\mathbf{w}_k & 0 & h_k^T \mathbf{w} \\ h_k^T \mathbf{w} & -1 & 0 \\ 0 & h_k^T \mathbf{w} & -1 \end{bmatrix} \begin{bmatrix} 1 \\ h_k^T \mathbf{w} \\ (h_k^T \mathbf{w})^2 \end{bmatrix} = 0$$

with h_k^T being the kth row of $H(\lambda)$, and k = 1, ..., m-1.

Transformed system:

$$w^{T}G(\lambda)w - 1 = 0$$
$$P((H(\lambda)w)^{3} - w) = 0$$

MEP-formulation of polynomial system

Using a companion linearization, we can write the polynomial equations as

$$\begin{bmatrix} -1 & \mathbf{w}^T G^T \\ \mathbf{w} & -I_{m \times m} \end{bmatrix} \begin{bmatrix} 1 \\ \mathbf{w} \end{bmatrix} = 0$$

$$\begin{bmatrix} -\mathbf{w}_k & 0 & h_k^T \mathbf{w} \\ h_k^T \mathbf{w} & -1 & 0 \\ 0 & h_k^T \mathbf{w} & -1 \end{bmatrix} \begin{bmatrix} 1 \\ h_k^T \mathbf{w} \\ (h_k^T \mathbf{w})^2 \end{bmatrix} = 0$$

with h_k^T being the kth row of $H(\lambda)$, and k = 1, ..., m-1.

Linear (in w₁,..., w_m) multi-parameter eigenvalue problem (MEP)
 → Use standard MEP-methods to obatin all sols. (operator determinants, generalized eigenvalue problems, cf. [Plestenjak, BIT, '17])

Numerical example (1/4)

We consider a **NEPv** with m=5 nonlinear terms. The problem is derived from an eigenvalue problem in \mathbb{R}^2 .

GPE-type eigenproblem (continuous setting)

Find u(x, y) and $\lambda \in \mathbb{R}$ such that

$$-\Delta u(x,y) + p(x,y)u(x,y) + \sum_{i=1}^{m} \phi_i^3(u)\psi_m(x,y) = \lambda u(x,y),$$

with $\|u\|_{L^2}=1$, and where the functionals $\phi_i(u)$ are defined by

$$\phi_i(u) = \int_{\Omega} \psi_i(x, y) u(x, y) d\Omega.$$

- p(x, y) = potential function, harmonic oscillator + optical lattice
- $\psi_i(x,y) = \text{Gaussians localized in different points}$

Numerical example (2/4)

- Discretize with FDs + trapezoidal rule for integrals
- We get the discrete **NEPv**:

Discrete problem

Find eigenpair $(\lambda, \nu) \in \mathbb{R} \times \mathbb{R}^{N^2}$ such that

$$\left(-L_{N^2} + D + \sum_{i=1}^{m} (a_i^T v)^2 a_i a_i^T\right) v = \lambda v$$

- We solve the **NEPv** by solving the equivalent **NEP**.
- NEP solved with Augmented Newton method + deflation of already computed eigs (see, e.g., [Effenberger, '13])

Numerical example (3/4)

Computed eigenmodes:

Numerical example (4/4)

Convergence history and μ -functions:

(a) Convergence history

(b) μ -functions

Conclusion

Most important point today: We can solve certain types of **NEPv** by transforming them to an equivalent **NEP**.

Continued work

Conclusion

Most important point today: We can solve certain types of **NEPv** by transforming them to an equivalent **NEP**.

Continued work

- To actually solve the GPE, we need n nonlinear terms. Our approach handles $m \ll n$ comfortably, but $m \approx n$ becomes more difficult.
- Can the GPE be well approximated with only a small number of terms?
- "Easy" generalization: replace squares with more general functions

Conclusion

Most important point today: We can solve certain types of **NEPv** by transforming them to an equivalent **NEP**.

Continued work

- To actually solve the GPE, we need n nonlinear terms. Our approach handles $m \ll n$ comfortably, but $m \approx n$ becomes more difficult.
- Can the GPE be well approximated with only a small number of terms?
- "Easy" generalization: replace squares with more general functions

Thank you for your attention!

Preprint: https://arxiv.org/abs/2506.16182