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Introduction

We are concerned with two types of nonlinear eigenvalue problems,
that have both received significant attention in the NLA community.
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Introduction

We are concerned with two types of nonlinear eigenvalue problems,
that have both received significant attention in the NLA community.

Problem 1: NEPv (our main problem today)
Find eigenpair (A, v) € R x R" such that

A(v)v=Av, |v| =1,

where A(v) € R"*" is symmetric and maps vectors to matrices.
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Introduction

We are concerned with two types of nonlinear eigenvalue problems,
that have both received significant attention in the NLA community.

Problem 1: NEPv (our main problem today)
Find eigenpair (A, v) € R x R" such that

A(v)v=Av, |v| =1,

where A(v) € R"*" is symmetric and maps vectors to matrices.

Problem 2: NEP
Find eigenpair (A, v) € R x R" such that

M(\)v =0,

where M(A) € R"*" is symmetric and maps scalars to matrices.
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A motivating application: the Gross-Pitaevskii eq.

i
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Left: velocity distribution in condensate. Source: Nobel prize report '01.

Right: quantized vortices in superconductor. Source: Wells et. al. '15.

Cooling a gas of bosons to ultra-low temperatures results in an exotic
state of matter: a Bose-Einstein condensate

Theoretically predicted in 1925 by Bose and Einstein

Verified experimentally in 1995 — Nobel prize to Cornell, Ketterle,
and Wieman!

Modeled by the Gross-Pitaevskii equation (GPE)

Discretization yields NEPv with cubic terms
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Gross-Pitaevskii eq.
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Gross-Pitaevskii eq.

Stationary GPE, continuous setting
Find u(x), x € RY, d = 2,3, and \ € R such that

—Au(x) + Vi (x)u(x) + slu(x)Pu(x) =du(x), |ul|=1.
~—— N —~
Kinetic energy Potential energy Particle interactions
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Gross-Pitaevskii eq.

Stationary GPE, continuous setting

Find u(x), x € R?, d = 2,3, and X € R such that
—Au(x) + Vi (x)u(x) + slu(x)Pu(x) =du(x), |ul|=1.
~——

TV
Kinetic energy Potential energy Particle interactions

See, e.g., [Henning, Malqvist,

Finite differences SIAM J. Numer. Anal. '17], and refs.

for more general discretization techniques

Stationary GPE, discrete setting
Find eigenpair (A, v) € R x R" such that

n

(—L,, +D+k|(ef v)2ere] +---+ (enTV)zeneTD v=2Av, |v[|=1
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Gross-Pitaevskii eq.

Stationary GPE, discrete setting
Find eigenpair (A, v) € R x R" such that

(—L,, + D45 |(ef v)2ere] + -+ (e,,Tv)2enenT]) v=2Av, |lv|=1.

Symmetric NEPv

Ground state typically the smallest eigenvalue, minimizer of the
energy in the system

Often: interested in a few of the smallest eigenvalues

Challenge: methods for GPE can find the ground state, but no
natural way to find several modes
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Detour: methods for NEPs

Recall our second problem for today:
Problem 2: NEP

Find eigenpair (A, v) € R x R" such that M(A\)v = 0 where M(\) € R"*"
is symmetric and maps scalars to matrices.
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Detour: methods for NEPs

Recall our second problem for today:
Problem 2: NEP

Find eigenpair (A, v) € R x R" such that M(A\)v = 0 where M(\) € R"*"
is symmetric and maps scalars to matrices.

e Mature field see e.g. summary [Mehrmann, Voss, GAMM Mitt. '04]
or [Giittel, Tisseur, Acta Numerica '17]
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Detour: methods for NEPs

Recall our second problem for today:

Problem 2: NEP

Find eigenpair (A, v) € R x R" such that M(A\)v = 0 where M(\) € R"*"
is symmetric and maps scalars to matrices.

e Mature field see e.g. summary [Mehrmann, Voss, GAMM Mitt. '04]
or [Giittel, Tisseur, Acta Numerica '17]

o A wide variety of efficient methods
» Newton methods: Quasi-Newton, Block-Newton, Broyden's method,...

Krylov methods: Rational Krylov, Nonlinear Arnoldi, Infinite Arnoldi,...
Jacobi-Davidson methods

»
| 3
» Contour integral methods: Beyn's method,...
» Linearization, specialized structures,...
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Detour: methods for NEPs

Recall our second problem for today:

Problem 2: NEP

Find eigenpair (A, v) € R x R" such that M(A\)v = 0 where M(\) € R"*"
is symmetric and maps scalars to matrices.

@ Mature field see e.g. summary [Mehrmann, Voss, GAMM Mitt. '04]
or [Giittel, Tisseur, Acta Numerica '17]

o A wide variety of efficient methods

» Newton methods: Quasi-Newton, Block-Newton, Broyden's method,...
Krylov methods: Rational Krylov, Nonlinear Arnoldi, Infinite Arnoldi,...
Jacobi-Davidson methods

Contour integral methods: Beyn's method,...

Linearization, specialized structures,...

v vy VvYy

@ Many methods can find several eigenvalues in a natural way
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Our approach (simplified case)

GPE-type NEPv

Via small poly. sys.

(Ao + (af v)?a1a] ) v = Av

Algebraic NEP

Vilhelm P. Lithell (KTH)

(Ao + p3(N)araf ) v =Av
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[llustration

Consider a small example of the NEPv:
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[llustration

Consider a small example of the NEPv:

([‘I é}_/\/ﬁ-(b 2] v)? B] 3 2]>V:0
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[llustration

Consider a small example of the NEPv:

([‘I é}_/\/ﬁ-(b 2] v)? B] 3 2]>V:0

Then 12()\) is given explicitly by the function

20 (A2 — 101 +23)2 |/
PN =132 —116A+281)

and the NEP (Ag — Al + pf(N)aiaf ) v = 0 can be solved with any
NEP-solver.
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Sketch of transformation

GPE-type NEPVv (single term)
Find eigenpair (A, v) € R x R" such that

(AO — A+ (alTv)za121T) v=0, [v|*=1,

where Ag € R™" is symmetric.
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Sketch of transformation

GPE-type NEPVv (single term)
Find eigenpair (A, v) € R x R" such that

(AO — A+ (alTv)za121T) v=0, [v|*=1,

where Ag € R™" is symmetric.

@ Define 1 = alTv.
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Sketch of transformation

GPE-type NEPVv (single term)
Find eigenpair (A, v) € R x R" such that

(AO — A+ (alTv)2a121T) v=0, [v|*=1,

where Ag € R™" is symmetric.

@ Define 1 = alTv.
@ Distributing v in the eq. above, and using u1, gives us

(Ao — M)+ p3ag =0
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Sketch of transformation

GPE-type NEPVv (single term)
Find eigenpair (A, v) € R x R" such that

(AO — A+ (alTv)2a121T) v=0, [v|*=1,

where Ag € R™" is symmetric.

@ Define 1 = alTv.
@ Distributing v in the eq. above, and using u1, gives us
(Ao — M)+ p3ag =0

o We get v =3\ — Ag)ta;
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Sketch of transformation

GPE-type NEPVv (single term)
Find eigenpair (A, v) € R x R" such that

(AO — A+ (alTv)2a121T) v=0, [v|*=1,

where Ag € R™" is symmetric.

@ Define 1 = alTv.

@ Distributing v in the eq. above, and using u1, gives us
(Ao — M)+ p3ag =0

o We get v =3\ — Ag)ta;

@ Use the normalization 1 = ||v|? = [i| |[(\M — Ao) ta1]?
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Sketch of transformation

GPE-type NEPVv (single term)
Find eigenpair (A, v) € R x R" such that

(AO — A+ (alTv)2a131T) v=0, [v|*=1,

where Ag € R™" is symmetric.

@ Define 1 = alTv.

@ Distributing v in the eq. above, and using u1, gives us
(Ao — M)+ p3ag =0

o We get v =3\ — Ag)ta;
@ Use the normalization 1 = ||v|? = [i| |[(\M — Ao) ta1]?
e Finally (use 2-norm and symmetry of Ap):

) ) 1 2/3
= )\ =
1 /’Ll( ) a]?'(AI _AO)_231
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The general case
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The general case

GPE-type NEPv
Find eigenpair (A,v) € R x R", m < n, such that

(AO—AI+( v)2aral + - +(a;v)2ama;)v:o, v =
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The general case

GPE-type NEPv
Find eigenpair (A,v) € R x R", m < n, such that

(Ao — M+ (af vPara] + -+ (ahv)?amal) v =0, |v|? =1

Equivalent NEP
Find eigenpair (A, v) € R x R", m < n, such that

(Ao — M+ p(Nara] +---+ ,uf,,(/\)amaL> v =0.
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The general case

GPE-type NEPv
Find eigenpair (A,v) € R x R", m < n, such that

(Ao — M+ (af v)?ara] +-- -+ (3,77;V)23m3;> v=0, [v|®=1.

Equivalent NEP
Find eigenpair (A, v) € R x R", m < n, such that

(Ao — M+ p(Nara] +---+ ,uf,,(/\)amaL> v =0.

@ The functions p1(A),. .., um(A) are defined implicitly via a small
polynomial system of m equations in m + 1 variables.
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The general case

GPE-type NEPv
Find eigenpair (A,v) € R x R", m < n, such that

m

(Ao — M+ (af v)?ara] +-- -+ (a;V)zamaT) v=0, [v|®=1.

Equivalent NEP
Find eigenpair (A, v) € R x R", m < n, such that

(Ao — M+ p(Nara] +---+ ,ufn(/\)amaL> v =0.

@ The functions p1(A),. .., um(A) are defined implicitly via a small
polynomial system of m equations in m + 1 variables.

@ It is derived in a fashion similar to the above example. — They exist
generically under the assumptions of the implicit function theorem.
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Defining p1(A), ..., tm(N)

Equivalent NEP
Find eigenpair (A, v) € R x R" such that

(Ao M+ pi(Naal +---+ u?,,(A)ama,,C> v =0.
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Defining p1(A), ..., tm(N)

Equivalent NEP
Find eigenpair (A, v) € R x R" such that

(Ao M+ pi(Naal +---+ u?,,(A)ama,,C> v =0.

@ We derived an expression for v when m = 1. Similarly for m > 1:

v=w\ = A))tay 4+ 13 (M — Ag) tan,
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Defining p1(A), ..., tm(N)

Equivalent NEP
Find eigenpair (A, v) € R x R" such that

(Ao M+ pi(Naal +---+ u?,,(A)amanC> v =0.

@ We derived an expression for v when m = 1. Similarly for m > 1:
v=p3(\ — Ao)tar + -+ pd (M — Ag) ram
@ The normalizaition condition gives one eq. We have additionally:
(ne=)a/v=p3al (M —Ao) tar+ -+ phal (A — Ao) 'am,

which gives m additional equations, £ =1,...,m.
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Defining p1(A), ..., tm(N)
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Defining p1(A), ..., tm(N)

@ In total: m+ 1 equations in m + 1 variables
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Defining p1(A), ..., tm(N)

@ In total: m+ 1 equations in m + 1 variables

@ We must select m equations to define functions p1,..., ttm
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Defining p1(A), ..., tm(N)

@ In total: m+ 1 equations in m + 1 variables
@ We must select m equations to define functions p1,..., ttm

e Formally: P € R(M=1)*m selects m — 1 equations
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Defining p1(A), ..., tm(N)

@ In total: m+ 1 equations in m + 1 variables
@ We must select m equations to define functions p1,..., ttm

e Formally: P € R(M=1)*m selects m — 1 equations

Polynomial system

The vector p1 = [u1,. .., ium] | satisfies the relations

)T\ -1=0,
P(H(\)p® — 1) = 0,

with G(A\) = AT(M = Ag)"2Am, H(A\) = AT(M — Ag) 1A
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Defining p1(A), ..., tm(N)

@ In total: m+ 1 equations in m + 1 variables
@ We must select m equations to define functions p1,..., tm
e Formally: P € R(M=1)*m selects m — 1 equations

Polynomial system

The vector y = [u1,. .., um] " satisfies the relations

)T\ —1=0,
P(H(A)u® — p) =0,

with G(A) = AT (A — Ag)2Am, H(A) = AT(M — Ag)tAn.

@ G, H = transfer functions

@ Note: potentially several solutions for one A — Multi-valued functions
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Defining p1(A), ..., tm(N)

Equivalent NEP
Find eigenpair (A, v) € R x R" such that

(Ao M+ BN aal 4 u%,(A)ama,Z,_> v=0.

Polynomial system

The vector p = [u1,...,um] | satisfies the relations

)T\ —1=0,
P(H(A\)u® — p) =0,

with G(A) = AT (Al — Ag)2Am, H(A) = AT(M — Ag) tAn.
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Equivalence

@ By construction, NEPv-solutions are NEP-solutions. The converse
also holds:
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Equivalence

@ By construction, NEPv-solutions are NEP-solutions. The converse
also holds:

Theorem (Thm. 2.3, Jarlebring, L., 2025)

The polynomial system generically defines functions

() = [u1(N), ..., wm(N)] T such that for any (M., vi), the following two
statements are equivalent.

The pair (\«, vi) is a solution to the NEPv.

The pair (A«, vi) is a solution to the NEP with the functions defined by
and ||vi| = 1.
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Equivalence

@ By construction, NEPv-solutions are NEP-solutions. The converse
also holds:

Theorem (Thm. 2.3, Jarlebring, L., 2025)

The polynomial system generically defines functions
() = [u1(N), ..., wm(N)] T such that for any (M., vi), the following two
statements are equivalent.

The pair (\«, vi) is a solution to the NEPv.

The pair (A«, vi) is a solution to the NEP with the functions defined by
and ||vi| = 1.

@ The polynomial system must be solved for every evaluation of NEP
— We need robust solver for polynomial-system
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Solving the polynomial system

(1) T6(\)p*~1=0
P(H\)p? — 1) =0

wlGA\)w —1=0
P(HMN)w)® —w) =0

[ -

"Black bBox" software Reformul n as MEP

(HomotopyContinuation. jl,...) (Companion linearization)
_! L
4

Solutions (Ao + wiAn + - 4+ WnAim)x =0
to poly. syst. MEP-techniques :
— NEP-eval. (Am0+W1Am1+"'+WmAmm)X:0
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Solving the polynomial system
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Solving the polynomial system

Transformed system:
w GA\)w —1=0
P((HMw)® —w) =0
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Solving the polynomial system

Transformed system:

w GA\)w —1=0
P((HM\)w)® —w) =0

MEP-formulation of polynomial system
Using a companion linearization, we can write the polynomial equations as
[—1 wTGT] [1}
=0
w _Imxm w
— Wy 0 hkTw 1

hkTw -1 0 hkTw =0
0 hlw -1|[(hfw)?

with h] being the kth row of H()\), and k=1,...,m — 1.
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Solving the polynomial system

Transformed system:
w GA\)w —1=0
P(HMw)®* —w) =0

MEP-formulation of polynomial system

Using a companion linearization, we can write the polynomial equations as

[—1 wTGT] [1}

=0
w _Imxm w
— Wy 0 hkTw 1

hkTw —1 0 hkTw =0
0 hlw —1| [(hIw)?

with h] being the kth row of H()\), and k=1,...,m— 1.

@ Linear (in wy, ..., wp,) multi-parameter eigenvalue problem (MEP)
— Use standard MEP-methods to obatin all sols. (operator determinants,
generalized eigenvalue problems, cf. [Plestenjak, BIT, '17])
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Numerical example (1/4)

We consider a NEPv with m = 5 nonlinear terms. The problem is derived
from an eigenvalue problem in R?.

GPE-type eigenproblem (continuous setting)
Find u(x,y) and A € R such that

m

—Au(x,y) + p(x y)ulx y) + Y 63 (u)dm(x, y) = Au(x, y),

i=1

with ||ul|;2 = 1, and where the functionals ¢;(u) are defined by

oi(u) = /Qip,-(x,y)u(x,y)dQ.

@ p(x,y) = potential function, harmonic oscillator + optical lattice

@ i(x,y) = Gaussians localized in different points
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Numerical example (2/4)

@ Discretize with FDs + trapezoidal rule for integrals
@ We get the discrete NEPv:

Discrete problem

Find eigenpair (A, v) € R x RV’ such that

m
(—LNz + D+ Z(a,Tv)za,'a,-T> v=A\v

i=1

@ We solve the NEPv by solving the equivalent NEP.

o NEP solved with Augmented Newton method + deflation of already
computed eigs (see, e.g., [Effenberger, '13])
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Numerical example (3/4)

Computed eigenmodes:

A & 91.6324 A~ 114.2244 A3 & 107.1942

¥y o,

1 I
-1 05 0 05 1 -1 —05 0 05 1

A4 & 108.6948 A5 & 118.4844 Ag & 128.7770

0.5 [ )
X x
X

0.5 x

A7 & 130.1797

’@;@x@x@’

N EET
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Conclusion

Most important point today: We can solve certain types of NEPv by
transforming them to an equivalent NEP.
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Conclusion

Most important point today: We can solve certain types of NEPv by
transforming them to an equivalent NEP.

Continued work

@ To actually solve the GPE, we need n nonlinear terms. Our approach
handles m < n comfortably, but m ~ n becomes more difficult.

@ Can the GPE be well approximated with only a small number of
terms?

e "Easy" generalization: replace squares with more general functions
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Conclusion

Most important point today: We can solve certain types of NEPv by
transforming them to an equivalent NEP.

Continued work
@ To actually solve the GPE, we need n nonlinear terms. Our approach
handles m < n comfortably, but m ~ n becomes more difficult.
@ Can the GPE be well approximated with only a small number of
terms?

e "Easy" generalization: replace squares with more general functions

Thank you for your attention!

Preprint: https://arxiv.org/abs/2506.16182
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