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Introduction

We are concerned with two types of nonlinear eigenvalue problems,
that have both received significant attention in the NLA community.

Problem 1: NEPv (our main problem today)

Find eigenpair (λ, v) ∈ R× Rn such that

A(v)v = λv , ∥v∥ = 1,

where A(v) ∈ Rn×n is symmetric and maps vectors to matrices.

Problem 2: NEP

Find eigenpair (λ, v) ∈ R× Rn such that

M(λ)v = 0,

where M(λ) ∈ Rn×n is symmetric and maps scalars to matrices.

Vilhelm P. Lithell (KTH) From NEPv to NEP NNLA-25, Uppsala 3 / 22



Introduction

We are concerned with two types of nonlinear eigenvalue problems,
that have both received significant attention in the NLA community.

Problem 1: NEPv (our main problem today)

Find eigenpair (λ, v) ∈ R× Rn such that

A(v)v = λv , ∥v∥ = 1,

where A(v) ∈ Rn×n is symmetric and maps vectors to matrices.

Problem 2: NEP

Find eigenpair (λ, v) ∈ R× Rn such that

M(λ)v = 0,

where M(λ) ∈ Rn×n is symmetric and maps scalars to matrices.

Vilhelm P. Lithell (KTH) From NEPv to NEP NNLA-25, Uppsala 3 / 22



Introduction

We are concerned with two types of nonlinear eigenvalue problems,
that have both received significant attention in the NLA community.

Problem 1: NEPv (our main problem today)

Find eigenpair (λ, v) ∈ R× Rn such that

A(v)v = λv , ∥v∥ = 1,

where A(v) ∈ Rn×n is symmetric and maps vectors to matrices.

Problem 2: NEP

Find eigenpair (λ, v) ∈ R× Rn such that

M(λ)v = 0,

where M(λ) ∈ Rn×n is symmetric and maps scalars to matrices.

Vilhelm P. Lithell (KTH) From NEPv to NEP NNLA-25, Uppsala 3 / 22



A motivating application: the Gross-Pitaevskii eq.

Left: velocity distribution in condensate. Source: Nobel prize report ’01.

Right: quantized vortices in superconductor. Source: Wells et. al. ’15.

Cooling a gas of bosons to ultra-low temperatures results in an exotic
state of matter: a Bose-Einstein condensate

Theoretically predicted in 1925 by Bose and Einstein

Verified experimentally in 1995 → Nobel prize to Cornell, Ketterle,
and Wieman!

Modeled by the Gross-Pitaevskii equation (GPE)

Discretization yields NEPv with cubic terms
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Gross-Pitaevskii eq.

Stationary GPE, continuous setting

Find u(x), x ∈ Rd , d = 2, 3, and λ ∈ R such that

−∆u(x)︸ ︷︷ ︸
Kinetic energy

+ Vtr (x)u(x)︸ ︷︷ ︸
Potential energy

+ κ|u(x)|2u(x)︸ ︷︷ ︸
Particle interactions

= λu(x), ∥u∥ = 1.

Stationary GPE, discrete setting

Find eigenpair (λ, v) ∈ R× Rn such that(
−Ln + D + κ

[
(eT1 v)2e1e

T
1 + · · ·+ (eTn v)2ene

T
n

])
v = λv , ∥v∥ = 1.
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Finite differences

See, e.g., [Henning, Målqvist,

SIAM J. Numer. Anal. ’17], and refs.

for more general discretization techniques
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Gross-Pitaevskii eq.

Stationary GPE, discrete setting

Find eigenpair (λ, v) ∈ R× Rn such that(
−Ln + D + κ

[
(eT1 v)2e1e

T
1 + · · ·+ (eTn v)2ene

T
n

])
v = λv , ∥v∥ = 1.

Symmetric NEPv

Ground state typically the smallest eigenvalue, minimizer of the
energy in the system

Often: interested in a few of the smallest eigenvalues

Challenge: methods for GPE can find the ground state, but no
natural way to find several modes
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Detour: methods for NEPs

Recall our second problem for today:

Problem 2: NEP

Find eigenpair (λ, v) ∈ R× Rn such that M(λ)v = 0 where M(λ) ∈ Rn×n

is symmetric and maps scalars to matrices.
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▶ Newton methods: Quasi-Newton, Block-Newton, Broyden’s method,...
▶ Krylov methods: Rational Krylov, Nonlinear Arnoldi, Infinite Arnoldi,...
▶ Jacobi-Davidson methods
▶ Contour integral methods: Beyn’s method,...
▶ Linearization, specialized structures,...

Many methods can find several eigenvalues in a natural way
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Our approach (simplified case)

(
A0 + (aT1 v)

2a1a
T
1

)
v = λv

(
A0 + µ21(λ)a1a

T
1

)
v = λv

GPE-type NEPv Via small poly. sys. Algebraic NEP

0 5 10
0

0.5

1

λ

µ
2 1
(λ
)
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Illustration

Consider a small example of the NEPv:
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Illustration

Consider a small example of the NEPv:([
4 1
1 6

]
− λI +

([
3 2

]
v
)2 [3

2

] [
3 2

])
v = 0
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Illustration

Consider a small example of the NEPv:([
4 1
1 6

]
− λI +

([
3 2

]
v
)2 [3

2

] [
3 2

])
v = 0

Then µ21(λ) is given explicitly by the function

µ21(λ) =

(
(λ2 − 10λ+ 23)2

13λ2 − 116λ+ 281

)2/3

,

and the NEP
(
A0 − λI + µ21(λ)a1a

T
1

)
v = 0 can be solved with any

NEP-solver.
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Sketch of transformation

GPE-type NEPv (single term)

Find eigenpair (λ, v) ∈ R× Rn such that(
A0 − λI + (aT1 v)

2a1a
T
1

)
v = 0, ∥v∥2 = 1,

where A0 ∈ Rn×n is symmetric.
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T
1
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Sketch of transformation

GPE-type NEPv (single term)

Find eigenpair (λ, v) ∈ R× Rn such that(
A0 − λI + (aT1 v)

2a1a
T
1

)
v = 0, ∥v∥2 = 1,

where A0 ∈ Rn×n is symmetric.

Define µ1 = aT1 v .
Distributing v in the eq. above, and using µ1, gives us

(A0 − λI )v + µ31a1 = 0
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Sketch of transformation

GPE-type NEPv (single term)
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Sketch of transformation

GPE-type NEPv (single term)

Find eigenpair (λ, v) ∈ R× Rn such that(
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2a1a
T
1

)
v = 0, ∥v∥2 = 1,

where A0 ∈ Rn×n is symmetric.

Define µ1 = aT1 v .
Distributing v in the eq. above, and using µ1, gives us

(A0 − λI )v + µ31a1 = 0

We get v = µ31(λI − A0)
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Use the normalization 1 = ∥v∥2 = |µ31| ∥(λI − A0)
−1a1∥2
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Sketch of transformation

GPE-type NEPv (single term)

Find eigenpair (λ, v) ∈ R× Rn such that(
A0 − λI + (aT1 v)

2a1a
T
1

)
v = 0, ∥v∥2 = 1,

where A0 ∈ Rn×n is symmetric.

Define µ1 = aT1 v .
Distributing v in the eq. above, and using µ1, gives us

(A0 − λI )v + µ31a1 = 0

We get v = µ31(λI − A0)
−1a1

Use the normalization 1 = ∥v∥2 = |µ31| ∥(λI − A0)
−1a1∥2

Finally (use 2-norm and symmetry of A0):

µ21 = µ21(λ) =

[
1

aT1 (λI − A0)−2a1

]2/3
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The general case

GPE-type NEPv

Find eigenpair (λ, v) ∈ R× Rn, m ≤ n, such that(
A0 − λI + (aT1 v)

2a1a
T
1 + · · ·+ (aTmv)

2ama
T
m

)
v = 0, ∥v∥2 = 1.

Equivalent NEP

Find eigenpair (λ, v) ∈ R× Rn, m ≤ n, such that(
A0 − λI + µ21(λ)a1a

T
1 + · · ·+ µ2m(λ)ama

T
m

)
v = 0.
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The general case

GPE-type NEPv

Find eigenpair (λ, v) ∈ R× Rn, m ≤ n, such that(
A0 − λI + (aT1 v)

2a1a
T
1 + · · ·+ (aTmv)

2ama
T
m

)
v = 0, ∥v∥2 = 1.

Equivalent NEP

Find eigenpair (λ, v) ∈ R× Rn, m ≤ n, such that(
A0 − λI + µ21(λ)a1a

T
1 + · · ·+ µ2m(λ)ama

T
m

)
v = 0.

The functions µ1(λ), . . . , µm(λ) are defined implicitly via a small
polynomial system of m equations in m + 1 variables.

It is derived in a fashion similar to the above example. → They exist
generically under the assumptions of the implicit function theorem.
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Defining µ1(λ), . . . , µm(λ)

Equivalent NEP

Find eigenpair (λ, v) ∈ R× Rn such that(
A0 − λI + µ21(λ)a1a

T
1 + · · ·+ µ2m(λ)ama

T
m

)
v = 0.
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Defining µ1(λ), . . . , µm(λ)

Equivalent NEP

Find eigenpair (λ, v) ∈ R× Rn such that(
A0 − λI + µ21(λ)a1a

T
1 + · · ·+ µ2m(λ)ama

T
m

)
v = 0.

We derived an expression for v when m = 1. Similarly for m > 1:

v = µ31(λI − A0)
−1a1 + · · ·+ µ3m(λI − A0)

−1am
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Defining µ1(λ), . . . , µm(λ)

Equivalent NEP

Find eigenpair (λ, v) ∈ R× Rn such that(
A0 − λI + µ21(λ)a1a

T
1 + · · ·+ µ2m(λ)ama

T
m

)
v = 0.

We derived an expression for v when m = 1. Similarly for m > 1:

v = µ31(λI − A0)
−1a1 + · · ·+ µ3m(λI − A0)

−1am

The normalizaition condition gives one eq. We have additionally:

(µℓ =) aTℓ v = µ31a
T
ℓ (λI − A0)

−1a1 + · · ·+ µ3ma
T
ℓ (λI − A0)

−1am,

which gives m additional equations, ℓ = 1, . . . ,m.
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Defining µ1(λ), . . . , µm(λ)

Polynomial system

The vector µ = [µ1, . . . , µm]
T satisfies the relations

(µ3)TG (λ)µ3 − 1 = 0,

P(H(λ)µ3 − µ) = 0,

with G (λ) = AT
m(λI − A0)

−2Am, H(λ) = AT
m(λI − A0)

−1Am.
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Defining µ1(λ), . . . , µm(λ)

In total: m + 1 equations in m + 1 variables

We must select m equations to define functions µ1, . . . , µm

Formally: P ∈ R(m−1)×m selects m − 1 equations

Polynomial system

The vector µ = [µ1, . . . , µm]
T satisfies the relations

(µ3)TG (λ)µ3 − 1 = 0,

P(H(λ)µ3 − µ) = 0,

with G (λ) = AT
m(λI − A0)

−2Am, H(λ) = AT
m(λI − A0)

−1Am.

G ,H = transfer functions

Note: potentially several solutions for one λ → Multi-valued functions
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Defining µ1(λ), . . . , µm(λ)

Equivalent NEP

Find eigenpair (λ, v) ∈ R× Rn such that(
A0 − λI + µ21(λ)a1a

T
1 + · · ·+ µ2m(λ)ama

T
m

)
v = 0.

Polynomial system

The vector µ = [µ1, . . . , µm]
T satisfies the relations

(µ3)TG (λ)µ3 − 1 = 0,

P(H(λ)µ3 − µ) = 0,

with G (λ) = AT
m(λI − A0)

−2Am, H(λ) = AT
m(λI − A0)

−1Am.
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Equivalence

By construction, NEPv-solutions are NEP-solutions. The converse
also holds:

Theorem (Thm. 2.3, Jarlebring, L., 2025)

The polynomial system generically defines functions
µ(λ) = [µ1(λ), . . . , µm(λ)]

T such that for any (λ∗, v∗), the following two
statements are equivalent.

▶ The pair (λ∗, v∗) is a solution to the NEPv.

▶ The pair (λ∗, v∗) is a solution to the NEP with the functions defined by µ
and ∥v∗∥ = 1.

Vilhelm P. Lithell (KTH) From NEPv to NEP NNLA-25, Uppsala 15 / 22



Equivalence

By construction, NEPv-solutions are NEP-solutions. The converse
also holds:

Theorem (Thm. 2.3, Jarlebring, L., 2025)

The polynomial system generically defines functions
µ(λ) = [µ1(λ), . . . , µm(λ)]

T such that for any (λ∗, v∗), the following two
statements are equivalent.

▶ The pair (λ∗, v∗) is a solution to the NEPv.

▶ The pair (λ∗, v∗) is a solution to the NEP with the functions defined by µ
and ∥v∗∥ = 1.

Vilhelm P. Lithell (KTH) From NEPv to NEP NNLA-25, Uppsala 15 / 22



Equivalence

By construction, NEPv-solutions are NEP-solutions. The converse
also holds:

Theorem (Thm. 2.3, Jarlebring, L., 2025)

The polynomial system generically defines functions
µ(λ) = [µ1(λ), . . . , µm(λ)]

T such that for any (λ∗, v∗), the following two
statements are equivalent.

▶ The pair (λ∗, v∗) is a solution to the NEPv.

▶ The pair (λ∗, v∗) is a solution to the NEP with the functions defined by µ
and ∥v∗∥ = 1.

The polynomial system must be solved for every evaluation of NEP
→ We need robust solver for polynomial-system
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Solving the polynomial system

(µ3)TG (λ)µ3 − 1 = 0
P(H(λ)µ3 − µ) = 0

w := µ3 wTG (λ)w − 1 = 0
P((H(λ)w)3 − w) = 0

Solutions
to poly. syst.
→ NEP-eval.

(A10 + w 1A11 + · · ·+ wmA1m)x = 0
...

(Am0 + w 1Am1 + · · ·+ wmAmm)x = 0

MEP-techniques

Reformulation as MEP
(Companion linearization)

”Black box” software
(HomotopyContinuation.jl,...)
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Solving the polynomial system

MEP-formulation of polynomial system

Using a companion linearization, we can write the polynomial equations as[
−1 wTGT

w −Im×m

] [
1
w

]
= 0−w k 0 hTk w

hTk w −1 0
0 hTk w −1

 1
hTk w

(hTk w)2

 = 0

with hTk being the kth row of H(λ), and k = 1, . . . ,m − 1.

Vilhelm P. Lithell (KTH) From NEPv to NEP NNLA-25, Uppsala 17 / 22



Solving the polynomial system

Transformed system:

wTG (λ)w − 1 = 0

P((H(λ)w)3 − w) = 0

MEP-formulation of polynomial system

Using a companion linearization, we can write the polynomial equations as[
−1 wTGT

w −Im×m

] [
1
w

]
= 0−w k 0 hTk w

hTk w −1 0
0 hTk w −1

 1
hTk w

(hTk w)2

 = 0

with hTk being the kth row of H(λ), and k = 1, . . . ,m − 1.

Vilhelm P. Lithell (KTH) From NEPv to NEP NNLA-25, Uppsala 17 / 22



Solving the polynomial system

Transformed system:

wTG (λ)w − 1 = 0

P((H(λ)w)3 − w) = 0

MEP-formulation of polynomial system

Using a companion linearization, we can write the polynomial equations as[
−1 wTGT

w −Im×m

] [
1
w

]
= 0−w k 0 hTk w

hTk w −1 0
0 hTk w −1

 1
hTk w

(hTk w)2

 = 0

with hTk being the kth row of H(λ), and k = 1, . . . ,m − 1.

Vilhelm P. Lithell (KTH) From NEPv to NEP NNLA-25, Uppsala 17 / 22



Solving the polynomial system

Transformed system:
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P((H(λ)w)3 − w) = 0

MEP-formulation of polynomial system

Using a companion linearization, we can write the polynomial equations as[
−1 wTGT

w −Im×m

] [
1
w

]
= 0−w k 0 hTk w

hTk w −1 0
0 hTk w −1

 1
hTk w

(hTk w)2

 = 0

with hTk being the kth row of H(λ), and k = 1, . . . ,m − 1.

Linear (in w 1, . . . ,wm) multi-parameter eigenvalue problem (MEP)
→ Use standard MEP-methods to obatin all sols. (operator determinants,
generalized eigenvalue problems, cf. [Plestenjak, BIT, ’17])
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Numerical example (1/4)

We consider a NEPv with m = 5 nonlinear terms. The problem is derived
from an eigenvalue problem in R2.

GPE-type eigenproblem (continuous setting)

Find u(x , y) and λ ∈ R such that

−∆u(x , y) + p(x , y)u(x , y) +
m∑
i=1

ϕ3i (u)ψm(x , y) = λu(x , y),

with ∥u∥L2 = 1, and where the functionals ϕi (u) are defined by

ϕi (u) =

∫
Ω
ψi (x , y)u(x , y)dΩ.

p(x , y) = potential function, harmonic oscillator + optical lattice

ψi (x , y) = Gaussians localized in different points
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Numerical example (2/4)

Discretize with FDs + trapezoidal rule for integrals

We get the discrete NEPv:

Discrete problem

Find eigenpair (λ, v) ∈ R× RN2
such that(

−LN2 + D +
m∑
i=1

(aTi v)
2aia

T
i

)
v = λv

We solve the NEPv by solving the equivalent NEP.
NEP solved with Augmented Newton method + deflation of already
computed eigs (see, e.g., [Effenberger, ’13])
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Numerical example (3/4)

Computed eigenmodes:
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Numerical example (4/4)

Convergence history and µ-functions:
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(b) µ-functions
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Conclusion

Most important point today: We can solve certain types of NEPv by
transforming them to an equivalent NEP.

Continued work
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To actually solve the GPE, we need n nonlinear terms. Our approach
handles m ≪ n comfortably, but m ≈ n becomes more difficult.

Can the GPE be well approximated with only a small number of
terms?

”Easy” generalization: replace squares with more general functions
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Conclusion

Most important point today: We can solve certain types of NEPv by
transforming them to an equivalent NEP.

Continued work

To actually solve the GPE, we need n nonlinear terms. Our approach
handles m ≪ n comfortably, but m ≈ n becomes more difficult.

Can the GPE be well approximated with only a small number of
terms?

”Easy” generalization: replace squares with more general functions

Thank you for your attention!

Preprint: https://arxiv.org/abs/2506.16182
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